PECULIARITIES OF THE MOLECULAR WEIGHT DISTRIBUTION OF FLUORESCEIN-CONTAINING COPOLYESTERS SYNTHESIZED BY THE STEGLICH REACTION
DOI:
https://doi.org/10.15421/082002Keywords:
molecular mass distribution, copolyesters, fluorescein, Steglich reaction, drug delivery systems.Abstract
The properties of polymers are substantially determined by their molecular mass and molecular mass distribution. At the same time, the average molecular mass of the polymers does not characterize them complete enough, particularly it does not describe the properties of the polymers of special purpose, which are produced for drug delivery and drug release. In this case the accurate assessment of the properties of polymers is especially needed. The article deals with the research of the composition of fractions and functional homogeneity of new amphiphilic copolyesters. Fluorescein-containing amphiphilic copolyesters of N-acyl derivatives of glutamic acid and polyether diols, which form self-stabilized dispersions in aqueous media can be considered as promising multifunctional polymers and may be used in biomedicine.
The molecular mass fractionation of copolyesters was carried out with the use of dialysis. The obtained polymers and their fractions were analyzed by exclusion chromatography and functional analysis, the surface tension was determined.
A detailed molecular mass distribution of copolyesters was obtained byusing the efficient exclusion chromatography, as well as due to the rather high mass of the monomers. The content of individual fractions, their functionality and colloid-chemical properties were quantitatively compared. It was shown that despite the different molecular mass the individual fractions of a copolyester were homogeneous with identical properties. This allowed us to describe such copolyesters as the good base for the creation of drug delivery systems and nanodiagnostics.
References
Lee K. Y., Mooney D. J. (2001). Hydrogels for Tissue Engineering. Chemical Reviews. 101(7), 1869–1879. https://doi.org/10.1021/cr000108x
JahangirianH., LemraskiE. G., WebsterT. J., Rafiee-MoghaddamR., AbdollahiY. (2017). A review of drug delivery systems based on nanotechnology and green chemistry: green nanomedicine. Int J Nanomedicine. 12, 2957–2978. doi:10.2147/IJN.S127683
Hubbell, J. A. (1999). Bioactive biomaterials. Current Opinion in Biotechnology, 10(2), 123–129. https://doi.org/10.1016/S0958-1669(99)80021-4
Biswas S., TorchilinV. (2014). Nanopreparations for organelle-specific delivery in cancer. Adv. Drug Deliv. Rev., 66, 26-41. doi: 10.1016/j.addr.2013.11.004я
Koren E., Apte A., Jani A., Torchilin V.P. (2014). Multifunctional PEGylated 2C5-immunoliposomes containing pH-sensitive bonds and TAT peptide for enhanced tumor cell internalization and cytotoxicity. J. Control. Release, 160(2), 264–273.
doi: 10.1016/j.jconrel.2011.12.002.
Patra, J. K., Das, G., Fraceto, L. F., Campos, E. V. R., Rodriguez-Torres, M. D. P., Acosta-Torres,L. S., Diaz-Torres, L. A., Grillo, R., Swamy, M. K., Sharma, S., Hab-temariam, S., Shin, H. S. (2018). Nano based drug delivery systems: Recent developments and future prospects. Journal of Nanobiotechnology. 16(1), 71. https://doi.org/10.1186/s12951-018-0392-8
He, J., Chen, H., Guo, Y., Wang, L., Zhu, L., Karahan, H. E., Chen, Y. (2018). Polycondensation of a Perylene Bisimide Derivative and L-Malic Acid as Water-Soluble Conjugates for Fluorescent Labeling of Live Mammali-an Cells. Polymers. 10(5), 559.
https://doi:10.3390/polym10050559
Lam, P-L, Wong, W-Y, Bian, Z, Chui, C-H, Gambari, R. (2017). Recent advances in green nanoparticulate systems for drug delivery: efficient delivery and safety concern. Nanomedicine, 12(4), 357–385.
https://doi: 10.2217/nnm-2016-0305.
Oliveira, O.N., Iost, R.M., Siqueira, J.R., Crespilho, F.N., Caseli, L. (2014). Nanomaterials for diagnosis: challenges and applications in smart devices based on molecular recognition. ACS Appl Mater Interfaces, 6(17), 14745–14766. doi: 10.1021/am5015056.
Griffith, L.G. (2000). Polymericbiomaterials. Actamate-rialia, 48(1), 263–277.
https://doi.org/10.1016/S1359-6454(99)00299-2
Masood, F. (2016). Polymeric nanoparticles for targeted drug delivery system for cancer therapy. Materials Science and Engineering C, 60, 569–578.
https://doi: 10.1016/j.msec.2015.11.067
Lombardo, D., Kiselev, M., Caccamo, M.T. (2019). Smart Nanoparticles for Drug Delivery Application: Development of Versatile Nanocarrier Platforms in Biotechnology and Nanomedicine. Journal of Nanomaterials, 12, 1–26.
https://doi.org/10.1155/2019/3702518
Hoare, T. R., Kohane, D. S. (2008).Hydrogels in drug delivery: Progress and challenges. Polymer, 49(8), 1993–2007. https://doi.org/10.1016/j.polymer.2008.01.027
Kuznetsova, K.I., Vostres, V.B., Fleychuk, R.I., Hevus, O.I. (2019). Synthesis of surface-active monomers and peroxides on the basis of disubstituted oxetane. Vo-prosy Khimii i Khimicheskoi Tekhnologii, 2, 5–11. doi: 10.32434/0321-4095-2019-123-2-5-11
Hasegawa, I., Hirashima, N. (2002). Styrene maleic acid neocarzinostatin transcatheter embolization for hepatocellular carcinoma – third report. Gan to kagaku ryoho Cancer Chemotherapy, 29(2), 253–259.
Shtilman M. I. (1993). [Immobilization on polymers]. Utresht-Tokyo: VSP.
Koksel, H., Ozturk, S., Kahraman, K., Basman, A., Ozbas, O. O., Ryu, G.H. (2008). Evaluation of molecular weight distribution, pasting and functional properties, and enzyme resistant starch content of acid-modified corn starches. Food Sci. Biotechnol., 17(4), 755–760.
Toroptseva, A. M., Belohorodskaia, K. V., Bondaren-ko, V. M. (1972). [Laboratory Workshop on Chemistry and Technology of High-Molecular Compounds]. Leningrad, USSR: Khimiya (in Russian).
Varvarenko, S. M.,Ferens, M. V., Samaryk, V. Ya., Noso-va, N. G., Fihurka, N. V., Ostapiv, D. D., Voronov, S. A. (2018). Synthesis of copolyesters of fluorescein and 2-(dodecanamino) pentanedionic acid via steglich reaction. Voprosy Khimii i Khimicheskoi Tekhnologii, 2, 5–15 (in Ukrainian).
Varvarenko, S. M., Tarnavchyk, I. T., Voronov, A. S., Fihurka, N.V., Dron, I.A., Nosova, N.G., Taras,R.S., Samaryk, V. Ya., Voronov, S.A. (2013). Synthesis and colloidal properties of polyesters based on glutamic ac-ids and glycols of different nature. Chemistry and Chemical Technology, 7(2), 164–168.
https://doi.org/10.23939/chcht07.02.161
Nagornyak, M. I., Fihurka, N. V., Samaryk, V. Ya., Varvarenko, S. M., Ferens, M. V., Oleksa, V. V. (2016). Modification of polysaccharides by N-derivates of glu-tamic acid using Steglich reaction. Chemistry and Chemical Technology, 10(4), 23–27.
https://doi.org/10.23939/chcht10.04.423
Chekh, B. O., Ferens, M. V., Ostapiv, D. D., Samaryk, V. Y., Varvarenko, S.M., Vlizlo, V. V. (2017). Character-istics of novel polymer based on pseudo-polyamino ac-ids GluLa-DPG-PEG600: binding of albumin, biocom-patibility, biodistribution and potential crossing the blood-brain barrier in rats. Ukr. Biochem. J., 89(4), 13–21. https://doi.org/10.15407/ubj89.04.013
Yakoviv, M. V., Nosova, N. G., Samaryk, V. Y., Pasetto, P., Varvarenko, S. M. (2019). Study of physical interactions of fluorescein-containing amphiphilic copolyesters with albumin in aqueous dispersions. Applied Nanoscience, 1–9.
https://doi.org/10.1007/s13204-019-00987-6
Varvarenko, S. M., Fihurka, N. V., Samaryk, V. Y., Voro-nov, A. S., Tarnavchyk, I. T., Dron, I. A., Nosova, N. G., Voronov, S. A. (2013). New amphiphilic polyesters of pseudo-polyamino acids based on natural dibasic glutamic acids and glycols obtained by Steglich esterification. Polymer journal, 35(3), 282–290. (in Ukrainian).
Yakoviv, M. V. (2019). Amphiphilic fluorescein-containing copolyesters of N-derivatives of glutamic acid obtained by the Steglich reaction (The dissertation author's abstract for the candidate's degree in chemical sciences). https://lpnu.ua/sites/default/files/dissertation/2019/12572/aref_yakoviv_m_v.pdf
Yakoviv, M. V., Fihurka, N. V., Nosova, N. G., Sama-ryk, V. Y., Vasylyshyn, T. M., Hermanovych, S. B., Vo-ronov, S. A., Varvarenko, S. M. (2018). Researches of amphiphilic properties of copolyesters with chromo-phore groups. Chemistry & Chemical Technology, 12(3), 318–325.
Downloads
Published
Issue
Section
License
Copyright (c) 2020 Днипровский национальный университет имени Олеся Гончара
This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors reserve the right of attribution for the submitted manuscript, while transferring to the Journal the right to publish the article under the Creative Commons Attribution License. This license allows free distribution of the published work under the condition of proper attribution of the original authors and the initial publication source (i.e. the Journal)
- Authors have the right to enter into separate agreements for additional non-exclusive distribution of the work in the form it was published in the Journal (such as publishing the article on the institutional website or as a part of a monograph), provided the original publication in this Journal is properly referenced
- The Journal allows and encourages online publication of the manuscripts (such as on personal web pages), even when such a manuscript is still under editorial consideration, since it allows for a productive scientific discussion and better citation dynamics (see The Effect of Open Access).