INFLUENCE OF TEMPERATURE OF THERMAL PROCESSING ON INTERCRYSTALLINE CORROSION RESISTANCE OF WELDED JOINTS

Authors

  • Natalia E. Kalinina Oles Honchar Dnipro National University, Ukraine
  • Diana B. Hlushkova Kharkov National Automobile and Highway University,, Ukraine
  • Yevgen O. Dzhur Oles Honchar Dnipro National University, Ukraine
  • Sergey Ya. Khodyrev Kharkov National Automobile and Highway University,, Ukraine
  • Vasily T. Kalinin National Metallurgical Academy of Ukraine,,
  • Sergey A. Polishko Oles Honchar Dnipro National University, Ukraine

DOI:

https://doi.org/10.15421/082005

Keywords:

heat-resistant alloy, corrosion resistance, intercrystalline corrosion, welding, structure, soldering

Abstract

Welded joints with corrosion-resistant steels and heat-resistant alloys requiring different modes of heat treatment to achieve the level of mechanical properties specified in the design documentation are used to manufacture parts and components of the rocket engine turbo-pump unit.

For the manufacture of parts and assemblies of liquid-propellant rocket engines at the machine-building enterprises of Ukraine there was a necessity of replacement of half-finished products because of certain difficulties at delivery of materials from EU countries.

First of all, it was necessary to replace flat products from high-alloy ХН67МВТЮ and 06Х15Н6МВФБ with one alloy that would possess the necessary set of physicomechanical characteristics. In the work, as a replacement for the used heat-resistant alloys, the Inconel 718 alloy welded to 316L steel was chosen. As a result of comparative studies of the intercrystalline corrosion resistance of welded joints of the heat-resistant Inconel 718 alloy with stainless steel, after testing various heat treatment conditions, the low-temperature heating conditions were recommended for soldering at a temperature of 950°C. Samples of welded joints, processed according to the recommended mode, showed increased corrosion resistance.

References

Bol'shakov, V.I., Glushkova, D.B. (2015). Povy'shenie dolgovechnosti otvetstvenny'h detaley stroitel'ny'h mashin [Improving the durability of critical parts of construction machines]. Monogr., Har'kov: Cifroprint, 236. (in Russian).

Bolshakov, V. I. Structure and (2016). Propertiesof Building Materials V. I. Bolshakov, L. L. Dvorkin. Trans Tech Publication, 220. (in Russian).

Kuznecov, V.P. (2016). Struktura i svoystva monokris-tallicheskih jaroprochny'h nikelevy'h splavov [Struc-ture and properties of single-crystal heat-resistant nickel alloys]. uchebnoe posobie. V. P. Kuznecov, V. P. Lesnikov, N. A. Popov. Izdatel'stvo Ural. un-ta, 160. (in Russian).

Logunov, A.V., SHmotin, Yu. N. (2013). Lesch'enko I.A., Starkov B.YU. Modelirovanie i razrabotka novy'h jaroprochny'h splavov. CHast' 1. [Modeling and devel-opment of new heat-resistant alloys. Part 1.]. Dvigatel'. 5(89). 24–27. (in Russian).

Merkulova G.A. (2008). Metallovedenie i termich-eskaya obrabotka cvetny'h splavov [Metallurgy and heat treatment of non-ferrous alloys]. Uchebnoe posobie G. A. Merkulova. Sib. feder. un-t, 312. (in Rus-sian).

Legirovanie splavov na nikelevoy osnove [Alloying nickel-based alloys].

http://mitalolom.ru/2012/04/13/2-legirovanie-splavov-na-nikelevoj-osnove. (in Russian).

Materi'ali metalevi'. Viprobuvannya na roztyag. [Mate-rials metal. Vipuvannya on the ropes]. (2006) DSTU EN 10002-1:2006 Materi'ali. K. Derjspojivstandart Ukrai`ni, 40. (in Ukrainian).

Paul, C., Ganesh, P., Mishra, S. (2007). Investigating laser rapid manufacturing for Inconel-625 compo-nents. Opticsand Laser Technology. 39(4). 800-805.

Ram, G., Reddy A., Rao K. (2005). Microstructure and tensile properties of Inconel 718 pulsed Nd-YAG la-serwelds . Journal of Materials Processing Technology. 167(1). 73–82.

Mashinostroenie. E`nciklopediya. [Engineering. Ency-clopedia]. (2001) Vol. 11-2. M. Mashinostroenie, 710.

Boguslae''v, V. O. (2005) Avi'aci'yno-kosmi'chni' mate-ri'ali ta tehnologi'i`. [Aviation and space technology and technology]. MotorSich, Zapori'jjya. 385. (in Ukrainian).

Boguslaev V.A., Muravchenko, F.M., Yаcenko, V. K. (2003). Tehnologicheskoe obespechenie e`ksplua-tacionny'h harakteristik detaley GTD. Lopatki turbiny' (chast' II), [Technological support for the operational characteristics of gas turbine engine parts. Turbine Blades (Part II)]. Zapori'jjya. MotorSich, 420. (in Rus-sian).

Kolomb'e, L. (1958). Nerjaveyusch'ie i jaroprochny'e stali. [Stainless and heat resistant steels]. Metallurgiz-dat. Moskva. 479. (in Russian).

Artemov, A. L. (2017). Otrabotka konstruktivny'h i tehnologicheskih resheniy dlya izgotovleniya opy'tny'h obrazcov vnutrenney obolochki kamery' sgoraniya mnogofunkcional'nogo jidkostnogo raketnogo dvigatelya s ispol'zovaniem additivny'h tehnologiy. [Development of structural and technological solutions for the manufacture of prototypes of the inner shell of the combustion chamber of a multifunctional liquid rocket engine using additive technologies]. Kosmich-eskaya tehnika i tehnologi. Kiev. 1(16). 50-62. (in Rusian).

Katkov, R. E`., Lozino-Lozinskaya, I.G., Mosolov, S.V., (2015). E`ksperimental'naya otrabotka kamery' sgoraniya mnogofunkcional'nogo jidkostnogo raketnogo dvigatelya s kislorodny'm ohlajdeniem ka-mery': rezul'taty'. [Experimental development of the combustion chamber of a multi-functional liquid-propellant rocket engine with oxygen-cooled chamber: results (2009-2014)]. Kosmicheskaya tehnika i tehnologii. Kiev. 4(11). 12-24. (in Russian).

Ospennikova, O. G. (2012). Strategiya razvitiya jaro-prochny'h splavov i staley special'nogo naznacheniya, zasch'itny'h i teplozasch'itny'h pokritiy. [Development Strategy for Heat-Resistant Alloys and Special-Purpose Steels, Protective and Heat-Proof Coatings]. Avi-acionny'e materialy' i tehnologii. Har'kov. 5. 19-35. (in Russian).

Hsieh, C. C. (2017). Precipitation Behavior of σ Phase in 19Cr-9Ni-2Mn and 18Cr-0.75Si Stainless Steels Hot-Rolled at 800 °C with Various Reduction Ratios. Mate-rials Science and Engineering. 467. 181–189.

Rowe, A. (2012). Microstructure evolution of Singe Crystal and Directionally Solidified Rejuvenated Nikel Superalloys. Superalloys, 245–254.

Rigina, L. G., Kostina, M. V., Bannykh, O. A. (2009). Effect of alloying on the composition-stable nitrogen content and phase composition of corrosion-resistant Fe-Cr-Mn-Ni-Mo-V-Nb alloys after solidification. 9-th Int. konf. High Nitrogen Steels, Moscow. 36–44.

Boguslaev, V.O., Kachan, O.Yа., Kalinina, N.E. (2009) Aviacionno-kosmicheskie materialy' i tehnologi. [Aero-space materials and technologies]. Zaporoj'e. Motor-Sich, 385. (in Russian).

Simonds B. J. (2018). Time-Resolved Absorptance and Melt Pool Dynamics during Intense Laser Irradiation of a Metal. Physical Review Applied. 10(4). 56–61.

Lee, A., Dong, H., Mirihanage, W. (2018). Revealing internal flow behaviour in arc welding and additive manufacturing of metals. Nature Communications. 9(1). 1–7.

Erohin, A. A. (1973) Osnovy' svarki plavlenim. [Basics of fusion welding]. Mashinostroenie. Moskva. 199. (in Russian).

Drujinina, O. A. (2013). Termodeformacionny'e pro-cessy' (usadka) v metalle pri provedenii svarochny'h rabot pri izgotovlenii korpusny'h otsekov. [Thermal deformation processes (shrinkage) in the metal during welding work in the manufacture of hull compart-ments]. Vestnik Dneprovskogo universiteta. Raketno-kosmicheskaya tehnika. Dnepr. 26(21). 27-33. (in Russian).

Nikolaev, G. A. (1971). Raschet, proektirovanie i izgotovlenie svarny'h konstrukci'y. [Calculation, design and manufacture of welded structures: Textbook. al-lowance for machine building. universities]. Ucheb. posobie dlya mashinostroit. vuzov. Moskva. Vy'sshaya shkola, 760. (in Russian).

Reed R. C. (2006). The Superalloys Fundamentalls and Applications. United States of America Cambridge University. NewYork, 372.

Gulyaev, A. P. (1986). Metallovedenie. Metallurgiya, 544. (in Russian).

Shlyamnev, A. P. (2000). Korrozionnostoykie, jarostoykie i vy'sokoprochny'e stali i splavy'. [Corro-sion-resistant, heat-resistant and high-strength steels and alloys]. Intermet Injenering, Moskva. 232. (in Russian).

Kashenkova, A. V. (2019). Rozrobka te tehnologi'i` posharovogo lazernogo spi'kannya konstrukci'ycnih staley. [Rosrobka te technologii sharovarnogo laser spikannya structural steel]. Kosmi'chna nauka i' tehnologi'ya. Kii`v. 5(18). 18–24. (in Ukrainian).

Stali i splavy' korrozionnostoykie. Metody' ispy'taniya na stoykost' protiv mejkristallitnoy korrozii. (2017). [Steel and alloys are corrosion resistant. Intergranular Corrosion Resistance Test Methods]. (GOST 6032-2017 Vved. 2017-06-01). M. Mejgosudarstvenny'y sovet po standartizacii, metrologii i sertifikacii, 36. (in Russian).

Downloads

Published

2020-05-04