SYNTHESIS AND RESEARCH OF THE ZEOLITE OF CHABAZITE TYPE ON THE BASIS OF NATURAL MINERAL NAKHCHIVAN

Authors

  • Gunel Mamedova Nakhchivan Department of the Azerbaijan National Academy of Sciences, Institute of natural resources, Azerbaijan
  • Tofiq Aliyev Nakhchivan Department of the Azerbaijan National Academy of Sciences, Institute of natural resources, Azerbaijan

DOI:

https://doi.org/10.15421/082006

Keywords:

Nakhchivan mineral, zeolite, chabazite, natural mineral, hydrothermal synthesis, optimal condition

Abstract

To predict the optimal synthesis conditions for the practically important chabazite zeolite based on the hydrothermal modification of the natural mineral Nakhchivan of the Kyukyuchay field. The starting component and hydrothermal reaction products have been identified by X-ray diffraction, thermogravimetric methods of analysis and scanning electron microscope. The practically important chabazite zeolite was identified by X-ray diffraction. The optimal conditions for its synthesis with a 100% degree of crystallization were predicted. It was established that the area of existence of chabazite is wide and the optimal conditions for its hydrothermal synthesis were a temperature of 230°C, a concentration of a thermal solution of 15–20% Ca(OH)2, of a  mineralizer CaCl2 of 10−15 % and a processing time of 100 hours. It was established that the resulting zeolite of chabazite stable up to 950°C and dehydrated chabazite is completely rehydrated within 72 hours, which once again proves its zeolitic character. The data allow to predetermine the synthesis conditions of a practically important chabazite-type zeolite.

References

Clifford, M. N. (2015). US Patent No.0231620. Washington, DC: U.S. Patent and Trademark Office.

Bull, I., Moini, A., Rai, M. (2011). US Patent No. 0020204. Washington, DC: U.S. Patent and Trademark Office.

Christopher, J.R. (2010). The Properties and Applications of Zeolites. Science Progress, 93(3), 1−63. http://dx.doi.org/10.3184/003685010X12800828155007

Jonghyun, K., Sung, J.C., Do Heui, K. (2017). Facile Synthesis of KFI-type Zeolite and Its Application to Selective Catalytic Reduction of NOx with NH3. ACS Catal., 7(9), 6070−6081.

https://doi.org/10.1021/acscatal.7b00697

Rozanska, X., Garcia-Sanchez, M., Hensen, E.J.M., Van Santen, R.A. (2005). A periodic density functional theory study of gallium-exchanged mordenite. Comptes Rendus Chimie, 8(3−4), 509−520.

http://dx.doi.org/10.1016/j.crci.2004.11.013

Karolina, A.T., Justyna, T., Urszula, F., Agnieszka, S., Iwona, T., Kinga, G.M. (2017). Alkaline-acid treated zeolite L as catalyst in ethanol dehydration process. Microporous and Mesoporous Materials, 241, 132−144. https://doi.org/10.1016/j.micromeso.2016.12.035

Guanghua, Y., Yuanyuan, S., Zhougyuan, G., Kake, Z., Honglai, L., Xinggui, Z., Coppens, M-O. (2018). Effect of zeolite particle size and internal grain boundaries on Pt/Beta catalyzed isomerization of n-pentane. Journal of Catalysis, 360, 152−159.

https://doi.org/10.1016/j.jcat.2018.01.033

Yulius, D. N., Sri, S., Zaenal, A. (2016). Hydrothermal Transformation of Natural Zeolite from Ende-NTT and Its Application as Adsorbent of Cationic Dye. Indones. J. Chem.,16(2),138−143. https://doi.org/10.22146/ijc.21156

Nobuyuki, T., Kohei, Y., Takuya, F. (2017). Ion-exchange properties of zeolite/glass hybrid materials. J. of the Ceramic Society of Japan, 125(5), 427−429. http://dx.doi.org/10.2109/jcersj2.17028

Min, J.G., Suk, B.H., Christian, K.K. (2017). Zeolites ZSM-25 and PST-20: Selective Carbon Dioxide Adsorbents at High Pressures. The Journal of Physical Chemistry C, 121(6), 3404−3409.

https://doi.org/10.1021/acs.jpcc.6b11582

Nazarenko, O.B., Rayisa, F.Z., Anastasya, S.V. (2012). Badinsk zeolite application for ground water treatment. 7th Intern. For. on Strategic tech., Tomsk, 2012, 357.

Mokarami, S.Gh., Emadi, H. (2007). Zeolite application to sea water for ammonia absorbtion and its effects on growth and survival of Penaeus indicus. Iranian Scientific Fisheries Journal, 16(2), 127−136. http://aquaticcommons.org/id/eprint/23651

Karapinar, N. (2009). Application of natural zeolite for phosphorus and ammonium removal from aqueous solutions. J. Hazard. Mater., 170(2−3), 1186−1191. https://doi.org/10.1016/j.jhazmat.2009.05.094

Bacakova, L., Vandrovcova, M., Kopova, I., Jirka, I. (2018). Applications of zeolites in biotechnology and medicine – a review. Biomaterials Science, 6(5), 974−989. http://doi.org/10.1039/C8BM00028j

Aysan, H., Edebali, S., Ozdemir, C., Karakaya, M. C., Karakaya, N. (2016). Use of chabazite, a naturally abundant zeolite, for the investigation of the adsorption kinetics and mechanism of methylene blue dye. Microporous and Mesoporous Materials, 235, 78−86.https://doi.org/10.1016/j.micromeso.2016.08.007

Sepaskhah, A.R., Yousefi, F. (2007). Effects of zeolite application on nitrate and ammonium retention of a loamy soil under saturated conditions. Australian Journal of Soil Research, 45(5), 368−373. http://dx.doi.org/10.1071/SR06069

Ibrahim, K., Ed-Deen, N., Khoury, H. (2002). Use of natural chabazite–phillipsite tuff in wastewater treatment from electroplating factories in Jordan. Environmental Geology, 41(5), 547−551.

http://dx.doi.org/10.1007/s002540100430

Sariman (2005). Synthesis of Na-A zeolite from natural zeolites. Indonesian Mining Journal, 8(1), 37−51.

Tatlier, M., Atalay-Oral, C. (2016). Crystallization of Zeolite A Coatings from Natural Zeolite. Materials Research, 19(6), 1469−1477.

http://dx.doi.org/10.1590/1980-5373-MR-2016-0564

Krisnandi, Y.K., Mahmuda, I., Rahayu, D.U.C., Sihombing, R. (2018). Synthesis and Characterization of ZSM-5 Zeolite from Dealuminated and Fragmentated Bayat-Klaten Natural Zeolite. The 6th International Conference of the Indonesian Chemical Society, Indonesia, 250−254.

Mamedova, G. A. (2019). [Modification of a Nakhchivan natural zeolite in the alkaline environment]. Mosc. Univ. Chem. Bull., 74(1), 46−53 (in Russian). http://doi.org/ 10.3103/S0027131419010085

Mamedova, G. А. (2018). [Hydrothermal synthesis of zeolite ZSM-10]. Bulletin of the Moscow State Technical University. N.E. Bauman, 80(5),139−145 (in Russian). http://doi.org/10.18698/1812-3368-2018-5-125-133

Mamedova, G. А., Novruzova, F. М. (2018). [Chemical modification of the natural mineral Nakhchivan]. Perspective materials, 6, 54−61 (in Russian). http://doi.org/10.30791/1028-978x-2018-6-54-61

Nuria, M. G., Manuel, M. M., Avelino, C. C. (2015). High yield synthesis of high-silica chabazite by combining the role of zeolite precursors and tetraethylammonium: SCR of NOx. Chem. Commun., 51, 9965−9968. https://doi.org/10.1039/C5CC02670A

Avelino, C. C., Manuel, M. M., Nuria, M. G. (2017). European Patent No. EP3233734A1. European Patent Office.

Eilertsen, E. A., Arstad, B., Svelle, S., Lillerud, K. P. (2012). Single parameter synthesis of high silica CHA zeolites from fluoride media. Micropor. Mesopor. Mat., 153, 94¬−99. 10.1016/j.micromeso.2011.12.026

Shuai, C., Tao, D., Sulong, Z., Xin, F., Yisong, W. (2019). Eco-friendly synthesis of kaolin-based chabazite for CO2 capture. Journal of the Ceramic Society of Japan, 127(9), 606−611.

http://doi.org/10.2109/jcersj2.19056

Du, T., Fang, X., Wei, Y. C., Shang, J. (2017). Synthesis of nanocontainer chabazites from fly ash with a template-and fluoride-free process for cesium ion adsorption. Energ. Fuel., 31(4), 4301−4307.

https://doi.org/10.1021/acs.energyfuels.6b03429

Ayoola, A.A., Hymore, F.K., Omodara, J.O., Oyeniyi, A.E., Ojo, S.F.,Chisom U. (2017). Effect of Crystallization Time on the Synthesis of Zeolite Y from Elefun Kaolinite Clay. International Journal of Applied Engineering Research, 12(21), 10981−10988.

Sánchez-López, P., Antúnez-García, J., Fuentes-Moyado, S., Galván, D., Petranovskii, V. (2019). Analysis of theoretical and experimental X-ray diffraction patterns for distinct mordenite frameworks. J. Mat. Sci., 54(10), 7745−7757. http://doi.org/10.1007/s10853-019-03407-w

Treacy, M. M., Higgins, J. B. (2001). Collection of simulated XRD powder patterns for zeolites. New York, USA: Elsevier.

Downloads

Published

2020-05-29