SYNTHESIS OF NITROGEN-CONTAINING HETEROCYCLIC COMPOUNDS BASED ON 9,10-ANTHRAQUINONE DERIVATIVES
DOI:
https://doi.org/10.15421/082013Keywords:
triazene, heterocyclization, nucleophilic substitution, condensation, cycloaddition, 9, 10-anthraquinones.Abstract
A simple glance at FDA databases reveals the structural significance of nitrogen-based heterocycles in the drug design and engineering of pharmaceuticals, with nearly 60 % of unique small-molecule drugs containing a nitrogen heterocycle. Many heterocyclic scaffolds can be considered as privilege structures. According to statistics, more than 85 % of all biologically-active chemical entities contain a heterocycle. The application of anthraquinone heterocycles provides a useful tool for modification of solubility, lipophilicity, polarity, and hydrogen bonding capacity of biologically active agents, which results in the optimization of the ADME/Tox properties of drugs or drug candidates. The review is devoted to the synthesis of heterocyclic compounds, derivatives of anthraquinone, obtained by reactions of nucleophilic substitution, diazotization, cycloaddition, isomerization and rearrangement, published over the past 20 years. Aminoanthraquinones and their diazo derivatives were most often used as starting materials for the production of nitrogen-containing heterocycles based on anthraquinone. The collected material shows that the the structure dynamics involved in anthraquinone nitrogen-based heterocycles, alongside with fundamental aspects such as ring size and aromaticity, translates into a vast array of chemical structures by which their molecular mechanisms of action can vary significantly.References
Hussain, H.; Al-Harrasi, A.; Al-Rawahi, A.; Green, I.; Csuk, R.; Ahmed, I.; Shan, A.; Abbas, G.; Rehman, N.; Ullah, R. (2015). A fruitful decade from 2005 to 2014 for anthraquinone patents. Expert Opin. Ther. Patents. 1053–1064. https://doi.org/10.1517/13543776.2015.1050793
Malik, E.; Muller, C. (2016). Anthraquinones As Pharmacological Tools and Drugs. Medicinal research reviews. 36(4), 705-748. https://doi.org/10.1002/med.21391
Khanal, P.; Patil, B. M.; Chand, J.; Naaz, Y. (2020). Anthraquinone Derivatives as an Immune Booster and their Therapeutic Option Against COVID-19. Natural Products and Bioprospecting. 10, 325-335. https://doi.org/10.21203/rs.3.rs-39093/v1
Bien H.-S., Stawitz J., Wunderlich K. (2000). Ullmann's Encyclopedia of Industrial Chemistry / edited by H.-S. Bien, J. Stawitz, K Wunderlich. – Weinheim : Wiley-VCH, 578. https://doi.org/10.1002/14356007.a02_355
Naeimi, H.; Namdari, R. (2009). Rapid, efficient and one pot synthesis of anthraquinone derivatives catalyzed by Lewis acid/methanesulfonic acid under heterogeneous conditions. Dyes and Pigments. 81, 259–263. https://doi.org/10.1016/j.dyepig.2008.10.019
Kukowska-Kaszuba, M.; Dzierzbicka, K.; Serocki, M.; Skladanowski, A. (2011). Solid Phase Synthesis and Biological Activity of Tuftsin Conjugates. J. Med. Chem. 54, 2447-2454. https://doi.org/10.1021/jm200002s
Bu, X.; Deady, L. W.; Finlay, G. J.; Baguley, B. C.; Denny, W. A. (2001). Synthesis and Cytotoxic Activity of 7-Oxo-7H-dibenz[f,ij]isoquinoline and 7-Oxo-7H-benzo[e]perimidine Derivatives. J. Med. Chem. 44, 2004-2014. https://doi.org/10.1021/jm010041l
Deady, L. W.; Smith, C. L. (2003). Tetracycle Formation from the Reaction of Acetophenones with 1-Aminoanthraquinone, and Further Annulation of Pyridine and Diazepine Rings. Aust. J. Chem. 56, 1219-1224. https://doi.org/10.1071/CH03136
Shankarling, G. S.; Sivakumar, K.; Dhalla A. M. (2010). US Patent No. 7655085B2. Washington, DC: U.S. Patent and Trademark Office.
Gaddam V. (2010). Synthesis of polycyclic aminoanthraquinone, indole and pyridocarbazole derivatives through inter and intramolecular hetero Diels–Alder reaction. (PhD dissertation). http://hdl.handle.net/10603/4211
Savelev, V. A.; Loskutov, V. A. (1991). Cyclization of N-(2-R-1-anthraquinonyl)ureas to anthrapyrimidine derivatives. Chem. Heterocycl. Compd. 27, 621-623.
Barabanov, I. I.; Fedenok, L. G.; Polykov, N. E.; Shvartsberg, M. S. (2001). Transformations of 1-amino-2-(3-hydroxyalk-1-ynyl)-9,10-anthraquinones in the presence of amines. Russ. Chem. Bull. 50, 1663-1667.
Vasilevsky, S. F.; Tretyakov, E. V.; Elguero, J. (2002). Synthesis and properties of acetylenic derivatives of pyrazoles. Adv. Heterocycl. Chem. 82, 1-50.
Shvartsberg, M. S.; Kolodina, E. A. (2008). Synthesis of 4-haloquinolines and their fused polycyclic derivatives. Mendeleev. Commun. 18, 109-111. DOI 10.1016/j.mencom.2008.03.020
Carroll, R. L.; Gorman, C. B. (2002). The Genesis of Molecular Electronics. Angew. Chem., Int. Ed., 41, 4378.
Klimenko, L. S.; Sirazhedinova, N. S.; Savelev, V. A.; Martyanov, T. P.; Korchagin, D. V. (2016). Photochemical cyclocondensation of 1-arylthio-2-azidoanthraquinones with phenols. Russ. Chem. Bull. 65, 1814-1819.
Lee, Yu-Ru.; Chen, T. C.; Lee, C. C.; Chen, C. L.; Ali, A.; Tikhomirov, A.; Guh, J. H.; Yu, D. S.; Huang, H. S. (2015). Ring fusion strategy for synthesis and lead optimization of sulfur-substituted anthra[1,2-c][1,2,5]thiadiazole-6,11-dione derivatives as promising scaffold of antitumor agents. Eur. J. of Med. Chem. 102, 661-676. https://doi.org/10.1016/j.ejmech.2015.07.052
Batista, R.; Costa, S.; Raposo, M. (2014). Selective colorimetric and fluorimetric detection of cyanide in aqueous solution using novel heterocyclic imidazo-anthraquinones. Sensors and Actuators B. 191, 791-799. https://doi.org/10.1016/j.snb.2013.10.030
Zvarych, V.; Stasevych, M.; Novikov, V.; Rusanov, E.; Vovk, M.; Szweda, P.; Grecka, K.; Milewski, S. (2019). Anthra[1,2-d][1,2,3]triazine-4,7,12(3H)-triones as a New Class of Antistaphylococcal Agents: Synthesis and Biological Evaluation. Molecules. 24, 4581. doi:10.3390/molecules24244581
Gornostaev, L. M.; Arnold, E.V.; Lykova, E. V.; Sadoschenko, M. V. (2010). Synthesis and functionalization of 7-hydroxyanthra[2,1-b]benzo[d]furan-8,13-diones. Chem. Heterocycl. Compd. 46, 665-669. DOI:10.1007/s10593-010-0566-2
Chen, W. L.; Wang, Z. H.; Feng, T. T.; Li, D. D.; Wang, C. H.; Xu, X. L.; Zhang, X. J.; You, X. L.; Zhang, X. J.; You, Q. D.; Guo, X. K. (2016). Discovery, design and synthesis of 6H-anthra[1,9-cd]isoxazol-6-one scaffold as G9a inhibitor through a combination of shape-based virtual screening and structure-based molecular modification. Bioorg. Med. Chem. 24, 6102-6108. https://doi.org/10.1016/j.bmc.2016.09.071
Fedenok, L. G.; Barabanov, I. I.; Zolnikova, N. A.; Bashurova, V. S.; Bogdanchikov, G. A. (2011). Mechanism and Synthesis Potentialities of the Cyclization of vic-(Alkynyl)arenediazonium Salts. Chem. Sustainable Dev. 19, 647-651.
Stepanov, A. A.; Gornostaev, L. M.; Vasilevsky, S. F.; Arnold, E. V.; Mamatyuk, V. I.; Fadeev, D. S.; Gold, B.; Alabugin, I. V. (2011). Chameleonic Reactivity of Vicinal Diazonium Salt of Acetylenyl-9,10-anthraquinones: Synthetic Application toward Two Heterocyclic Targets. J. Org. Chem. 76(21), 8737-8748. https://doi.org/10.1021/jo2014214
Sabadakh, O. P.; Taras, T. M.; Luchkevich, E. R.; Novikov, V. P. (2015). Synthesis of triazene derivatives of 9, 10-anthraquinone. Russ. J. Org. Chem. 51(2), 277-278. https://doi.org/10.1134/S1070428015020244
Shupeniuk, V. I.; Taras, T. M.; Sabadakh, O. P.; Bolibrukh L.D.; Zhurakhivska L. R. (2019). [Tryazeny na osnovi 4-imidazol zamishhenogho antrakhinonu jak imovirni inghibitory bilkiv]. Lviv, Ukraine: Khimija, tekhnologhija rechovyn ta jikh zastosuvannja. 2(2). (in Ukrainian). https://doi.org/10.23939/ctas2019.02.135
Taras, T. M.; Dejchakivsky, Y. I.; Shupeniuk, V. I.; Sabadakh, O. P.; Bolibrukh, L. D. (2019). [Osoblyvosti otrymannja tryazeniv antrakhinonovogho rjadu]. Lviv, Ukraine: Khimija, tekhnologhija rechovyn ta jikh zastosuvannja, 2(1). (in Ukrainian). https://doi.org/10.23939/ctas2019.01.092
Sabadakh, O.; Lozynskyi, A.; Luchkevych, E.; Taras, T.; Vynnytska, R.; Karpenko, O.; Novikov, V.; Lesyk, R. (2018). The application of anthraquinone -based triazenes as equivalents of diazonium salts in reaction with methylene active compounds. Phosphorus, Sulfur,and Silicon and the Related Elements. 193(7), 409–414. https://doi.org/10.1080/10426507.2018.1452236
Bulgakova, N. A.; Gornostaev, L. M. (2001). Cyclization of 1-Aryl-3-[4-aryl(cyclohexyl)amino-9,10-dioxo-1-anthryl]triazenes to 3-Aryl-5-aryl(cyclohexyl)-aminoanthra[1,2d][1,2,3]triazole-6,11-diones. J. Org. Chem. 37(9), 1351-1352. https://doi.org/ 10.1023/A:1013164528653
Shupenyuk, V. I.; Mamykin, S. V.; Taras, T. N.; Matkivskyi, M. P.; Sabadakh, O. P.; Matkivskyi, O. M. (2020). Structure and Morphology of Anthraquinone Triazene Films on Silicon Substrate. Physics and Chemistry of Solid State. 21(1), 117-123. DOI: 10.15330/pcss.21.1.117-123
Patel, N. B.; Patel, A. L. (2008). Characterization, application and microbial study of imidazole base acid antraquinone dyes. Oriental Journal of Chemistry. 24(2), 551-558.
Patel, N. B.; Patel, A. L. (2009). Performance and microbial studies of acid anthraquinone dyes containing triazole on various fibres. Int. J. Chem. Sci. 7(1), 155-168.
Raval, D. A.; Chauhan, Y. B. (1997). Synthesis of 8-aminoceramidone derivatives by modified two step process. Indian J. of Chem. Technology. 4, 53-56.
Inoue, H.; Hida, M.; Tuong, T. D.; Murata, T. (1973). The Nucleophilic Photo-substitution reaction of anthraquinone derivatives. I. The Photo-amination of sodium 1-amino-4-bromanthraquinone-2-sulfate. J. Chem. Soc., of Japan. 46, 1759–1762.
Kappe, C. O.; Dallinger, D. (2009). Controlled microwave heating in modern organic highlights from the 2004-2008. Mol. Divers. 13, 171–193. https://doi.org/10.1007/s11030-009-9138-8
Patricci, E.; Mann, A.; Schoenfelder, A. (2006). Microwaves Make Hydroformylation a Rapid and Easy Process. Org. Lett. 8(17), 3725-3727.
Roy, S.; Large, J. R.; Akande, A. M.; Kshatri, A.; Webb, T. I.; Domene, C.; Sergeant, G. P.; Mchale, N. G.; Thornbury, K. D.; Hollywood M. A. (2004). Development of GoSlo-SR-5-69, a potent activator of large conductance Ca2+-activated K+ (BK) channels. Eur. J. Med. Chem. 75, 426–437. https://doi.org /10.1016/j.ejmech.2014.01.035
Klimenko, L. S.; Pritchina, E. A.; Gritsan, N. P. (2003). Photochemical and Thermal Transformations of 1‐Aryloxy‐2‐ and 4‐Azidoanthraquinones. Chem. Eur. J. 9, 1639–1644.
https://doi.org/10.1002/chem.200390188
Klimenko, L. S.; Pritchina, E. A.; Gritsan, N. P. (2001). Synthesis of 5H-naphtho[2,3-c]phenothiazine-8,13-diones from 1-arylthio-2-azidoanthraquinones. Russ. Chem. Bull. 50, 678-681.
Kucherov, F. A.; Zlotin, S. G. (2001). Synthesis of linear and angular anthraquinonoisothiazol-3-ones, their S-oxides, and S,S-dioxides. Russ. Chem. Bull. 50, 1657-1662. DOI: 10.1023/A:1013003122428
Тихомиров, А. С.; Литвинова, В. А.; Лузиков, Ю. Н.; Королев, А. М.; Синкевич, Ю. Б.; Щекотихин А. Е. (2017). Heterocyclic Analogs of 5,12-Naphthacenequinone 14*. Synthesis of naphtho[2,3-f]indole-3-carboxylic Acid Derivatives. Chem. Heterocycl. Compd. 53(10), 1072-1079. DOI 10.1007/s10593-017-2173-y
Beresnev V. A.; Gornostaev, L. M. (2008). Specificity of the cyclization of 1-alkyl(aryl)sulfonylamino-9,10-anthraquinones into naphtho[1,2,3-cd]indol-6(2H)-ones. Russ. J. Org. Chem. 44, 1508-1511. DOI: 10.1134/S1070428008100187
Downloads
Published
Issue
Section
License
Copyright (c) 2020 Днипровский национальный университет имени Олеся Гончара
This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors reserve the right of attribution for the submitted manuscript, while transferring to the Journal the right to publish the article under the Creative Commons Attribution License. This license allows free distribution of the published work under the condition of proper attribution of the original authors and the initial publication source (i.e. the Journal)
- Authors have the right to enter into separate agreements for additional non-exclusive distribution of the work in the form it was published in the Journal (such as publishing the article on the institutional website or as a part of a monograph), provided the original publication in this Journal is properly referenced
- The Journal allows and encourages online publication of the manuscripts (such as on personal web pages), even when such a manuscript is still under editorial consideration, since it allows for a productive scientific discussion and better citation dynamics (see The Effect of Open Access).