SURFACE PROPERTIES OF LEAD (IV) OXIDE

Authors

  • Tatiana V. Luk’yanenko Ukrainian State University of Chemical Technology, Ukraine https://orcid.org/0000-0001-9272-0301
  • Nikolai V. Nikolenko Ukrainian State University of Chemical Technology, Ukraine
  • Larisa V. Dmitrikova Dnipropetrovsk Medical Academy, Ukraine
  • Anna S. Maslak Dnipropetrovsk Medical Academy, Ukraine
  • Alexander B. Velichenko Ukrainian State University of Chemical Technology, Ukraine

DOI:

https://doi.org/10.15421/082023

Keywords:

lead (IV) oxide, heterocyclic hydrocarbons, orbital interactions

Abstract

The regularities of adsorption and oxidation of several aromatic and heterocyclic nitrogen- and oxygen-containing hydrocarbons from their aqueous solutions on lead (IV) oxide have been studied. Methods of chemical and molecular mechanics, as well as a correlation approach based on the comparison of adsorption equilibrium with the electronic properties of the adsorbate were used for evaluation.  The energies of the occupied orbitals were used as parameters of the correlation between the electronic and adsorption properties of organic molecules. The marginally controlled adsorption mechanism is postulated to interpret the observed correlations for the specific adsorption of organic compounds on low-band PbO2. As a result of the study, it was found that organic compounds adsorbed or oxidized to lead (IV) oxide are quite selective. The observed effects cannot be explained by differences in chemical composition or, for example, in the degree of hydrophilicity of the test compound.  It is established that the regularities of adsorption, oxidation and structural transformations of organic surfactants of compounds on lead oxide can be explained from the same point of view on the basis of orbital interactions of their boundary orbitals.  The possibility of gaining the total energy of a system with complete electron transfer from an organic molecule to a PbO2 cluster model has been studied.

Author Biography

Tatiana V. Luk’yanenko, Ukrainian State University of Chemical Technology

кафедра фізичної хімії, професор

References

Velichenko, A. B., Knysh, V. A., Luk'yanenko, T. V., Devilliers, D., Danilov, F. I. (2008). Electrodeposition of PbO2-ZrO2 composite materials. Rus. J. of Electrochem., 44(11), 1251-1256. doi: 10.1134/S1023193508110098

Amadelli, R., Armelao, L., Tondello, E., Daolio, S., Fabrizio, M., Pagura, C., Velichenko, A. (1999). SIMS and XPS study about ions influence on electrodeposited PbO2 films. Appl. Surf. Science, 142(1), 200–203. doi: 10.1016/S0169-4332(98)00707-7

Knysh, V., Luk’yanenko, T., Shmychkova, O., Amadelli, R., Velichenko, A. (2017). Electrodeposition of composite PbO2–TiO2 materials from colloidal methanesulfonate electrolytes. J. Solid State Electrochem., 21 (2), 537–544. doi:10.1007/s10008-016-3394-1

Amadelli, R., Velichenko, А. (2001). Lead dioxide electrodes for high potential anodic processes.‎ J. of the Serbian Chem. Society, 66(11-12), 835–845. doi: 10.2298/jsc0112835a

Danilov, F. I., Velichenko, А. B. (1993). Electrocatalytic activity of anodes in reference to Cr(III) oxidation reaction. Electrochim. Acta, 38(2-3), 437–440. doi: 10.1016/0013-4686(93)85162-R

Sokolsky, G., Zudina, L., Boldyrev, E., Miroshnikov, O., Gauk, N., Kiporenko, O.Ya. (2018). ORR electrocatalysis on Cr3+, Fe2+, Co2+-doped manganese(IV) oxides. Acta Phys. Polonica A, 133(4), 1097-1102. doi:10.12693/APhysPolA.133.1097

Vargas, R., Borras, C., Mendez, D., Mostany, J., Scharifker, B.R. (2016). Electrochemical oxygen transfer reactions: electrode materials, surface processes, kinetic models, linear free energy correlations, and perspectives. A review. J. Solid State Electrochem., 20, 875893. doi:10.1007/s10008-015-2984-7.

Krishna, M., Fraser, E. J., Wills, R. G. A., Walsh, F. C. (2018). Developments in soluble lead flow batteries and remaining challenges: An illustrated review. J. Energy Storage, 15, 69–90. doi: 10.1016/j.est.2017.10.020.

Du, H., Duan, G., Vang, N., Liu, J., Tang, Y., Pang, R., Chen, Y., Wan, P. (2018). Fabrication of Ga2 O3 –PbO2 electrode and its performance in electrochemical advanced oxidation processes, J. Solid State Electrochem., 22(12), 3799–3806. doi: 10.1007/s10008-018-4082-0.

Pereyra, J., Martinez, M. V., Barbero, C., Bruno, M., Acevedo, D. (2019). Hydrogel-graphene oxide nanocomposites as electrochemical platform to simultaneously determine dopamine in presence of ascorbic acid using an unmodified glassy carbon electrode. J. Compos. Sci., 3, 1-14. doi: 10.3390/jcs3010014.

Pouladvand, I., Asl, S. K., Hoseini, M. G., Rezvani, M. (2019). Characterization and electrochemical behavior of Ti/TiO2–RuO2–IrO2–SnO2 anodes prepared by sol–gel process. J. Sol-Gel Sci. Technol., 89, 553561. doi: 10.1007/s10971-018-4887-4.

Li, X., Xu, H., Yan W. (2017). Effects of twelve sodium dodecyl sulfate (SDS) on electro-catalytic performance and stability of PbO2electrode. J. Alloy Compd., 718, 386–395. doi: 10.1016/j.jallcom.2017.05.147

Nechayev, Y. A., Nikolenko, N. V. (1988) An adsorption mechanism for supergene gold accumulation. Geochem. Internat., 25(11), 52–56.

Plaickner, J., Speiser, Eu., Chandola S., Esser, N., Singh Dh. (2020) Adsorption of toluene-3,4-dithiol on silver islands investigated by surface-enhanced. Raman spectroscopy, 51(5), 788-794. doi: 10.1002/jrs.5843

Lee, E. М., Koopal L. K. (1996). Adsorption of Cationic and Anionic Surfactants on Metal Oxide Surfaces: Surface Charge Adjustment and Competition Effects. J. Coll. and Interf. Science, 177(2), 478–489. doi: 10.1006/jcis.1996.0061

Nikolenko, N. V. (2001) The surface properties of calcite: An adsorption model with orbital control. Ads. Science and Techn., 19(3), 237–244. doi: 10.1260/0263617011494123

Nikolenko, N. V., Esajenko, E. E. (2005). Surface properties of synthetic calcium hydroxyapatite. Ads. Science and Techn., 23(7), 543–553. doi: 10.1260/026361705775212466

Park, R. L., Jonker, B. T., Iwasaki, H., Zhu Q.-G. (1985). Quantum size effects in the reflection of slow electrons from thin films. Appl. Surf. Science, 22–23, 1–13. doi: 10.1016/0378-5963(85)90031-5

Nikolenko, N. V., Kalashnikov, Yu. V., Kostyniuk, A. O., Poloz, A. Yu., Aksenenko E. V. (2019). Difference in adsorption properties of Fe(III), Mo(VI) oxides and Fe(III) molybdate as a cause of high selectivity of methanol oxidation on iron molybdate catalyst. Vopr. Khimii i Khim. Tekhn., 3, 35–45. doi: 10.32434/0321-4095-2019-124-3-35-45

Amakawa, K., Wang, Yu., Kroehnert, J., Schlögl, R., Trunschke, A. (2019). Acid sites on silica-supported molybdenum oxides probed by ammonia adsorbtion: Experiment and theory. Mol. Catalysis, 478, 110–118. doi: 10.1016/j.mcat.2019.110580

Constantin, S., Bombos, М., Doukeh, R., Vasilievici, G., Matei, V. (2018). Kinetics of 1-dodecanethiol Desulfurization by Reactive Adsorbtion on MgO/dolomite. Revista de Chimie, 69(12), 3439–3444. doi: 10.37358/RC.18.12.6765

Dewar, M. J., Zoebisch, E. G., Healy, E. F., Stewart J. J. P. (1985). AM1: A new general-purpose quantum mechanical molecular model. J. Am. Chem. Soc., 107(13), 3902–3909. doi: 10.1021/ja00299a024

Stewart, J. J. (1989). Optimization of parameters for semiempirical methods. 1. Method. J. Computational Chem., 10(2), 209–220. doi:10.1002/jcc.540100208

Stewart, J. J. (1989). Optimization of parameters for semiempirical methods. 2. Applications. J. Computational Chem., 10(2), 221-264. doi:10.1002/jcc.540100209

Sun, Yu., He, Ya., Tang, B., Wu, Zh., Tao, Ch., Ban, J., Jiang, L., Sun, X. (2016). Selective adsorption and decomposition of pollutants using RGO-TiO2 with optimized surface functional groups. RSC Advances, 8(56), 31996–32002 doi:10.1039/C8RA05345F

Published

2020-10-13