ALKALINE ELECTROLYTE ELECTRODEPOSITION OF Pb-Sn(TiOx) ALLOY
DOI:
https://doi.org/10.15421/082024Keywords:
К2ТіО3, сплав Pb-Sn, режим електролізу, електроосаждення, PbО2, SnO2.Abstract
In this work, the production of thermal and electrolytic triple alloy Pb-Sn (TiOx) is investigated and some properties of the obtained material are considered. Conclusions are made on the advantage of the electrolytic method in comparison with the thermal one. An alkaline tin and lead electrolyte containing potassium metatitanate has been developed. According to the criteria of the maximum content of titanium, dissipative power and surface quality, its optimal composition is determined: КОН – 100–150 g/l, SnCl2 – 16 g/l, (СН3СОО)2Pb – 75 g/l, К2ТіО3 – 0.2 g/l, glycerol – 50–60 g/l. The optimal conditions for electrolysis are a temperature of 20–30 ˚С, current density ік = 20 mA/cm2; the ratio of the cathode and anode surfaces is not less than 1 : 2. The passivated coatings photocatalytic activity research results together with their corrosion tests data and surface morphology analysis confirmed their high quality. The obtained alloy can be used as a corrosion-resistant coating, as a substrate for photo- and electroactive electrodes based on valve metal oxides, etc.
References
Alnakhlani, A., Hassan, B., Abdulhafiz, M., Al-Hajji, M. A. (2020). Effect of heating rates and Zn-addition on the thermal properties of Pb-Sn alloy. International journal of advanced research., 5(3)., 20–27. http://dx.doi.org/10.21474/IJAR01/3478
Arefi-Rad, M. R., Kafashan, H. (2020). Pb-doped SnS nano-powders: Comprehensive physical characterizations. Optical Materials., 105, 109887. http://dx.doi.org/10.1016/j.optmat.2020.109887
Wang, F., Li, D., Tian, S., Zhang, Z., Wang, J., Yan, C. (2017). YanInterfacial behaviors of Sn-Pb, Sn-Ag-Cu Pb-free and mixed Sn-Ag-Cu/Sn-Pb solder joints during electromigration. Microelectronics Reliability, 73, 106–117. http://dx.doi.org/10.1016/j.microrel.2017.04.031
Sekimoto, H. Sugawara, S., Nosaka, J. (2020). Effect of Aqueous Antimony Species on Corrosion of Pb–Sn–Ca Alloy in Copper Electrowinning. Materials transactions, 61(8), 162–163. http://dx.doi.org/10.2320/matertrans.M-M2020831
Jones, W. K., Liu, Y., Shah, M., Clarke R. (1998). Mechanical properties of Pb/Sn, Pb/In and Sn-In solders. Soldering and Surface Mount Technology, 10(1), 37–41. http://doi.org/10.1108/09540919810203847
Zhengxi, H., Xiaohua, J. (2017). The Internal stress and binding force of carbon nanotubes / Pb Sn composite coatings. Advances in Engineering Research (AER), 143, 675 – 680.
Bakour, Z., Dakhouche, A. (2018). Electrochemical Corrosion of Pb-Sn and Pb-Sb Alloys for Lead-Acid Battery Applications. Acta Physica Polonica A., 134(1), 103–105. http://doi.org/10.12693/APhysPolA.134.103
Hu, Z., Jie, X., Lu, G. (2010). Corrosion resistance of Pb–Sn composite coatings reinforced by carbon nanotubes. Journal of Coatings Technology and Research, 7(6), 809–814. http://doi.org/10.1007 / s11998-010-9269-у
Widiatmoko, P., Nurdin, I., Devianto, H., Prakarsa, B., Hudoyo, H. (2020). Electrochemical reduction of CO2 to Formic Acid on Pb-Sn Alloy Cathode. IOP Conference Series Materials Science and Engineering, 823:012053. http://doi.org/10.1088/1757-899X/823/1/012053
Yang, Z., Oropeza, F. E., Zhang, K. H. L. (2020). P-block metal-based (Sn, In, Bi, Pb) electrocatalysts for selective reduction of CO2 to formate. APL Materials, 8(6):060901
Bagheri, S. N., Julkapli, N. M. (2014). Titanium dioxide as a catalyst support in heterogeneous catalysis. Scientific World Journal, 214, 3–10. https://doi.org/10.1155/2014/727496
Hintshoa, N., Petrika, L., Nechaeva, A. (2014). Photo-catalytic activity of titanium dioxide carbon nanotubenano-composites modified with silver and palladium nanoparticles. Applied Catalysis B: Environmental, 157, 273–283. https://doi.org/10.1016/j.apcatb.2014.03.021
Salomatina, S. V., Loginova, A. S., Ignatov, S. R. (2016). Structure and catalytic activity of poly (titanium oxide) doped by gold nanoparticles in organic polymeric matrix. Inorg. Organomet. Polym., 26, 1280–1291. https://doi.org/10.1007/s10904-016-0409-4
Plyasovskaya, К. Vargalyuk, V., Sknar, I., Cheremysinova, А., Sigunov, O., Karakurkchi, A. (2017). Research into corrosion and electrocatalytic properties of the modified oxide films on tin. Eastern European Journal of Enterprise Technologies, 5(12–89), 39–45. https://doi.org/10.15587/1729-4061.2017.109710
Ilin, V.A. (1971). [Tinning and leading]., Moscow, USSR: Mashgiz. (in Russian).
Hu, Z., Jie, X. (2015). Study of Polyacrylic Acid Dispersing Pb-Sn-CNTs Composite Plating Solution. 5th International Conference on Advanced Design and Manufacturing Engineering,
-94-6252-113-1. https://doi.org/10.2991/icadme-15.2015.401
Babichev, A. P., Babushkina, N. A., Bratkovskiy, A. M. (1991). [Physical quantities. Directory]. In I. S. Grigoreva, E. Z. Meylihova (Ed.). Moscow, USSR: Energoatomizdat. (in Russian).
Varghaljuk, V. F., Plyasovskaya, K. A., Nester, E. I. (2016). [Electrodeposition of tin in presence of К2ТiО3]. Vìsnik Dnìpropetrovs’kogo unìversitetu. Serìâ Нìmìâ – Bulletin of Dnipropetrovsk university. Series Сhemistry, 24(1), 7–12. (in Russian). https://doi.org/10.15421/081602
Pashina, A. G., Ritter, A. Ya. Varghaljuk, V. F., Plyasovskaya, K. A. (2018). [Рb-Sn alloy with additives of titanium compounds]. TeoretichnI ta eksperimentalnI aspekti suchasnoyi himiyi ta materialiv – Theoretical and experimental aspects of modern chemistry and materials, 71. (in Ukrainian).
Lyahov, B.F., Kudryavtsev, V.N., Vagramyan, A.T. USSR Patent No. 393370. Moscow, USSR. (in Russian).
Marchenko, E. M. (1971). [Photometric determination of elements]. Moscow, USSR: Mir. (in Russian).
Rahmankulov, D. L., Kimsanov, B. H., Chanyishev R. R. (2003). [Physical and chemical properties of glycerin]. Moscow, Russia: Khimiya. (in Russian).
Girin, O. B., Khlyntsev, V. P. (2000). Mechanism of liquid phase formation in metals during electrodeposition. Elektronnaya Obrabotka Materialov, 3, 13–18.
Girin, O. B. (2017). Further evidence of phase formation through a liquid state stage in metals being electrodeposited: part 1. Surf. Eng. Appl. Electrochem., 53, 2, 137-143.
https://doi.org/10.3103/S1068375517020041
Girin, O. B. (2017). Further evidence of phase formation through a liquid state stage in metals being electrodeposited: part 2. Surf. Eng. Appl. Electrochem., 53, 3, 233-239.
https://doi.org/10.3103/S1068375517030048
Girin O. B. (2017). Further evidence of phase formation through a liquid state stage in metals being electrodeposited: part 3. Surf. Eng. Appl. Electrochem., 53, 4, 339-344.
https://doi.org/10.3103/S1068375517040056
Girin, O. B., Vorob’ev, G. M. (1987). Mechanism of structure formation in electrolytic coatings. Russian metallurgy. Metally, 4, 148-152.
Girin, О. B., Korolyanchuk, D. G. (2020). Electrochemical phase formation of metals and alloys at chemically identical solid or liquid cathode: part 1 – metals. Surf. Eng. Appl. Electrochem., 56, 1, 28-40. https://doi.org/10.3103/S1068375520010068
Huang, M., Yu., S., Lin, B., Dongn, L., Zhang, F., Fan, M., Wang, L., Yu, J., Deng, Ch. (2014). Influence of preparation methods on the structure and catalytic performance of SnO2-doped TiO2 photocatalysts. Ceramics Int., 40, 13305–13312. https://doi.org/10.1016/j.ceramint.2014.05.043
Velichenko, A. B., Knysh, V. A., Luk’yanenko, T. V., Nikolenko, N. N. (2016). Electrodeposition of PbO2–TiO2 nanocomposite materials from suspension electrolytes. Theor. Exp. Chem., 52, 127–131. https://doi.org/10.1007/s11237-016-9461-y
Petrukhyna, O. M. (1992). [Analytical chemistry. Chemical methods of analysis]. Moscow, Russia: Khimiya. (in Russian).
Golovko, D. A., Belyanovskaya, E. A. (1999). [Self-activation of a tin electrode modified by anodic treatment in an alkaline solution]. Voprosy khimii i khimicheskoi technologii – Issues of Chemistry and Chemical Technology, (1), 84–86 (in Russian).
Downloads
Published
Issue
Section
License
Copyright (c) 2020 Днипровский национальный университет имени Олеся Гончара
This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors reserve the right of attribution for the submitted manuscript, while transferring to the Journal the right to publish the article under the Creative Commons Attribution License. This license allows free distribution of the published work under the condition of proper attribution of the original authors and the initial publication source (i.e. the Journal)
- Authors have the right to enter into separate agreements for additional non-exclusive distribution of the work in the form it was published in the Journal (such as publishing the article on the institutional website or as a part of a monograph), provided the original publication in this Journal is properly referenced
- The Journal allows and encourages online publication of the manuscripts (such as on personal web pages), even when such a manuscript is still under editorial consideration, since it allows for a productive scientific discussion and better citation dynamics (see The Effect of Open Access).