ALKALINE ELECTROLYTE ELECTRODEPOSITION OF Pb-Sn(TiOx) ALLOY

Authors

  • Kateryna A. Plyasovskaya Oles Honchar Dnipro National University, Dnipro, Ukraine, Ukraine
  • Oleg B. Girin Ukrainian State University of Chemical Technology, Dnipro, Ukraine, Ukraine
  • Viktor F. Vargaliuk Oles Honchar Dnipro National University, Dnipro, Ukraine, Ukraine

DOI:

https://doi.org/10.15421/082024

Keywords:

К2ТіО3, сплав Pb-Sn, режим електролізу, електроосаждення, PbО2, SnO2.

Abstract

In this work, the production of thermal and electrolytic triple alloy Pb-Sn (TiOx) is investigated and some properties of the obtained material are considered. Conclusions are made on the advantage of the electrolytic method in comparison with the thermal one. An alkaline tin and lead electrolyte containing potassium metatitanate has been developed. According to the criteria of the maximum content of titanium, dissipative power and surface quality, its optimal composition is determined: КОН – 100–150 g/l, SnCl2 – 16 g/l, (СН3СОО)2Pb – 75 g/l, К2ТіО3 – 0.2 g/l, glycerol – 50–60 g/l. The optimal conditions for electrolysis are a temperature of 20–30 ˚С, current density ік = 20 mA/cm2; the ratio of the cathode and anode surfaces is not less than 1 : 2. The passivated coatings photocatalytic activity research results together with their corrosion tests data and surface morphology analysis confirmed their high quality. The obtained alloy can be used as a corrosion-resistant coating, as a substrate for photo- and electroactive electrodes based on valve metal oxides, etc.

Author Biography

Kateryna A. Plyasovskaya, Oles Honchar Dnipro National University, Dnipro, Ukraine

Кафедра физической и неорганической химии, доц.

References

Alnakhlani, A., Hassan, B., Abdulhafiz, M., Al-Hajji, M. A. (2020). Effect of heating rates and Zn-addition on the thermal properties of Pb-Sn alloy. International journal of advanced research., 5(3)., 20–27. http://dx.doi.org/10.21474/IJAR01/3478

Arefi-Rad, M. R., Kafashan, H. (2020). Pb-doped SnS nano-powders: Comprehensive physical characterizations. Optical Materials., 105, 109887. http://dx.doi.org/10.1016/j.optmat.2020.109887

Wang, F., Li, D., Tian, S., Zhang, Z., Wang, J., Yan, C. (2017). YanInterfacial behaviors of Sn-Pb, Sn-Ag-Cu Pb-free and mixed Sn-Ag-Cu/Sn-Pb solder joints during electromigration. Microelectronics Reliability, 73, 106–117. http://dx.doi.org/10.1016/j.microrel.2017.04.031

Sekimoto, H. Sugawara, S., Nosaka, J. (2020). Effect of Aqueous Antimony Species on Corrosion of Pb–Sn–Ca Alloy in Copper Electrowinning. Materials transactions, 61(8), 162–163. http://dx.doi.org/10.2320/matertrans.M-M2020831

Jones, W. K., Liu, Y., Shah, M., Clarke R. (1998). Mechanical properties of Pb/Sn, Pb/In and Sn-In solders. Soldering and Surface Mount Technology, 10(1), 37–41. http://doi.org/10.1108/09540919810203847

Zhengxi, H., Xiaohua, J. (2017). The Internal stress and binding force of carbon nanotubes / Pb Sn composite coatings. Advances in Engineering Research (AER), 143, 675 – 680.

Bakour, Z., Dakhouche, A. (2018). Electrochemical Corrosion of Pb-Sn and Pb-Sb Alloys for Lead-Acid Battery Applications. Acta Physica Polonica A., 134(1), 103–105. http://doi.org/10.12693/APhysPolA.134.103

Hu, Z., Jie, X., Lu, G. (2010). Corrosion resistance of Pb–Sn composite coatings reinforced by carbon nanotubes. Journal of Coatings Technology and Research, 7(6), 809–814. http://doi.org/10.1007 / s11998-010-9269-у

Widiatmoko, P., Nurdin, I., Devianto, H., Prakarsa, B., Hudoyo, H. (2020). Electrochemical reduction of CO2 to Formic Acid on Pb-Sn Alloy Cathode. IOP Conference Series Materials Science and Engineering, 823:012053. http://doi.org/10.1088/1757-899X/823/1/012053

Yang, Z., Oropeza, F. E., Zhang, K. H. L. (2020). P-block metal-based (Sn, In, Bi, Pb) electrocatalysts for selective reduction of CO2 to formate. APL Materials, 8(6):060901

Bagheri, S. N., Julkapli, N. M. (2014). Titanium dioxide as a catalyst support in heterogeneous catalysis. Scientific World Journal, 214, 3–10. https://doi.org/10.1155/2014/727496

Hintshoa, N., Petrika, L., Nechaeva, A. (2014). Photo-catalytic activity of titanium dioxide carbon nanotubenano-composites modified with silver and palladium nanoparticles. Applied Catalysis B: Environmental, 157, 273–283. https://doi.org/10.1016/j.apcatb.2014.03.021

Salomatina, S. V., Loginova, A. S., Ignatov, S. R. (2016). Structure and catalytic activity of poly (titanium oxide) doped by gold nanoparticles in organic polymeric matrix. Inorg. Organomet. Polym., 26, 1280–1291. https://doi.org/10.1007/s10904-016-0409-4

Plyasovskaya, К. Vargalyuk, V., Sknar, I., Cheremysinova, А., Sigunov, O., Karakurkchi, A. (2017). Research into corrosion and electrocatalytic properties of the modified oxide films on tin. Eastern European Journal of Enterprise Technologies, 5(12–89), 39–45. https://doi.org/10.15587/1729-4061.2017.109710

Ilin, V.A. (1971). [Tinning and leading]., Moscow, USSR: Mashgiz. (in Russian).

Hu, Z., Jie, X. (2015). Study of Polyacrylic Acid Dispersing Pb-Sn-CNTs Composite Plating Solution. 5th International Conference on Advanced Design and Manufacturing Engineering,

-94-6252-113-1. https://doi.org/10.2991/icadme-15.2015.401

Babichev, A. P., Babushkina, N. A., Bratkovskiy, A. M. (1991). [Physical quantities. Directory]. In I. S. Grigoreva, E. Z. Meylihova (Ed.). Moscow, USSR: Energoatomizdat. (in Russian).

Varghaljuk, V. F., Plyasovskaya, K. A., Nester, E. I. (2016). [Electrodeposition of tin in presence of К2ТiО3]. Vìsnik Dnìpropetrovs’kogo unìversitetu. Serìâ Нìmìâ – Bulletin of Dnipropetrovsk university. Series Сhemistry, 24(1), 7–12. (in Russian). https://doi.org/10.15421/081602

Pashina, A. G., Ritter, A. Ya. Varghaljuk, V. F., Plyasovskaya, K. A. (2018). [Рb-Sn alloy with additives of titanium compounds]. TeoretichnI ta eksperimentalnI aspekti suchasnoyi himiyi ta materialiv – Theoretical and experimental aspects of modern chemistry and materials, 71. (in Ukrainian).

Lyahov, B.F., Kudryavtsev, V.N., Vagramyan, A.T. USSR Patent No. 393370. Moscow, USSR. (in Russian).

Marchenko, E. M. (1971). [Photometric determination of elements]. Moscow, USSR: Mir. (in Russian).

Rahmankulov, D. L., Kimsanov, B. H., Chanyishev R. R. (2003). [Physical and chemical properties of glycerin]. Moscow, Russia: Khimiya. (in Russian).

Girin, O. B., Khlyntsev, V. P. (2000). Mechanism of liquid phase formation in metals during electrodeposition. Elektronnaya Obrabotka Materialov, 3, 13–18.

Girin, O. B. (2017). Further evidence of phase formation through a liquid state stage in metals being electrodeposited: part 1. Surf. Eng. Appl. Electrochem., 53, 2, 137-143.

https://doi.org/10.3103/S1068375517020041

Girin, O. B. (2017). Further evidence of phase formation through a liquid state stage in metals being electrodeposited: part 2. Surf. Eng. Appl. Electrochem., 53, 3, 233-239.

https://doi.org/10.3103/S1068375517030048

Girin O. B. (2017). Further evidence of phase formation through a liquid state stage in metals being electrodeposited: part 3. Surf. Eng. Appl. Electrochem., 53, 4, 339-344.

https://doi.org/10.3103/S1068375517040056

Girin, O. B., Vorob’ev, G. M. (1987). Mechanism of structure formation in electrolytic coatings. Russian metallurgy. Metally, 4, 148-152.

Girin, О. B., Korolyanchuk, D. G. (2020). Electrochemical phase formation of metals and alloys at chemically identical solid or liquid cathode: part 1 – metals. Surf. Eng. Appl. Electrochem., 56, 1, 28-40. https://doi.org/10.3103/S1068375520010068

Huang, M., Yu., S., Lin, B., Dongn, L., Zhang, F., Fan, M., Wang, L., Yu, J., Deng, Ch. (2014). Influence of preparation methods on the structure and catalytic performance of SnO2-doped TiO2 photocatalysts. Ceramics Int., 40, 13305–13312. https://doi.org/10.1016/j.ceramint.2014.05.043

Velichenko, A. B., Knysh, V. A., Luk’yanenko, T. V., Nikolenko, N. N. (2016). Electrodeposition of PbO2–TiO2 nanocomposite materials from suspension electrolytes. Theor. Exp. Chem., 52, 127–131. https://doi.org/10.1007/s11237-016-9461-y

Petrukhyna, O. M. (1992). [Analytical chemistry. Chemical methods of analysis]. Moscow, Russia: Khimiya. (in Russian).

Golovko, D. A., Belyanovskaya, E. A. (1999). [Self-activation of a tin electrode modified by anodic treatment in an alkaline solution]. Voprosy khimii i khimicheskoi technologii – Issues of Chemistry and Chemical Technology, (1), 84–86 (in Russian).

Downloads

Published

2020-11-12