INFLUENCE OF MALEIC ACID ON THE COMPOSITION AND STRUCTURE OF ORGANOCOPPER DISPERSIONS OBTAINED BY CHEMICAL AND ELECTROCHEMICAL REDUCTION OF Cu2+-IONS

Authors

  • Viktor F. Vargalyuk Oles Honchar Dnipro National University, Ukraine
  • Volodymyr A. Polonskyy Днипровский национальный университет имени Олеся Гончара, Ukraine
  • Yevhen S. Osokin Днипровский национальный университет имени Олеся Гончара, Ukraine
  • Arina Y. Skok Днипровский национальный университет имени Олеся Гончара, Ukraine

DOI:

https://doi.org/10.15421/082025

Keywords:

copper microdispersion, zinc cementation, electrochemical deposition, maleic acid

Abstract

Using chemical (zinc cementation) and electrochemical (cathodic deposition on titanium nitride) methods, copper microdispersions were obtained in the presence of maleic acid in an acidic solution CuSO4. It was complexonometrically established that electrochemically obtained copper powders are characterized by a high metal content (97.9 wt. %) and a small amount of non-metallic inclusions has been determined. But their dispersion under the action of maleic acid increases by an order of magnitude. The metal content is reduced to 39.7 wt. % in chemically obtained powders. The elemental composition of particles (wt. %) has been determined by energy-dispersive x-ray spectroscopy: C – 9.35, O – 25.76, Cu – 64.90. The presence of complexed water in the organometallic dispersion has been thermogravimetrically proved. These data, combined with the data of IR spectroscopy, led to the conclusion that the main component of the organometallic dispersion is the complex [Cu(C4H3O4)(H2O)2].

Author Biographies

Viktor F. Vargalyuk, Oles Honchar Dnipro National University

Декан химического факультета

Volodymyr A. Polonskyy, Днипровский национальный университет имени Олеся Гончара

Доцент

Yevhen S. Osokin, Днипровский национальный университет имени Олеся Гончара

Аспірант

Arina Y. Skok, Днипровский национальный университет имени Олеся Гончара

Студент

References

Chauhan, P. K., Khan, S. (2020). Microstructural examination of aluminium-copper functionally graded material developed by powder metallurgy route. Materials Today: Proceedings,25, 833–837. https://doi.org/10.1016/j.matpr.2019.10.007

Xiao, Z., Geng, H., Sun, C., Jia, P., Luo, H. (2015). Effect of yttrium on properties of copper prepared by powder metallurgy. Advanced Powder Technology,26(4), 1079–1086. https://doi.org/10.1016/j.apt.2015.05.003

Ponraj, N. V., Azhagurajan, A., Vettivel, S. C., Shajan, X. S., Nabhiraj, P. Y., Sivapragash, M. (2017). Graphene nanosheet as reinforcement agent in copper matrix composite by using powder metallurgy method. Surfaces and Interfaces, 6, 190–196. https://doi.org/10.1016/j.surfin.2017.01.010

Kuntiy, O. I. (2008). Electrochemistry and morphology of dispersed metals. Lviv: NU«LP».

Dume, T., Oya, M., Niimoto, D., Tsuboy, M. (2010). Antifouling paint formulation with a high non-volatile content. Russsian Patent No. 2401288 C2. Russsian.

Korepanov, D. A., Chirkova, N. M., Rudenok, V. A., Grabovsky, I. V., Sergeeva, E. A. (2013). Influence of a finely dispersed suspension based on a metal / carbon nanocomposite of copper on the sowing quality of seeds of Pinus silvestris L. Bulletin of the Udmurt University. Series «Biology. Earth Sciences», (2), 3–7.

Silva, F. S., Cinca, N., Dosta, S., Cano, I. G., Guilemany, J. M., Caires, C. S. A., Limac, A. R., Silvac, C. M., Oliveirac, S. L., Cairesc A. R. L., Benedetti, A. V. (2019). Corrosion resistance and antibacterial properties of copper coating deposited by cold gas spray. Surface and Coatings Technology, 361, 292–301. https://doi.org/10.1016/j.surfcoat.2019.01.029

Javadhesari, S. M., Alipour, S., Mohammadnejad, S., Akbarpour, M. R. (2019). Antibacterial activity of ultra-small copper oxide (II) nanoparticles synthesized by mechanochemical processing against S. aureus and E. coli. Materials Science and Engineering: C, 105, 110011. https://doi.org/10.1016/j.msec.2019.110011

Phan, D. N., Dorjjugder, N., Saito, Y., Khan, M. Q., Ullah, A., Bie, X., Taguchi, G., Kim, I. S. (2020). Antibacterial mechanisms of various copper species incorporated in polymeric nanofibers against bacteria. Materials Today Communications, 25, 101377. https://doi.org/10.1016/j.mtcomm.2020.101377

Eshkalak, S. K., Khatibzadeh, M., Kowsari, E., Chinnappan, A., Ramakrishna, S. (2018). A novel surface modification of copper(II) phthalocyanine with ionic liquids as electronic ink. Dyes and Pigments, 154, 296–302. https://doi.org/10.1016/j.dyepig.2018.01.030

Vargalyuk V. F., Polonskyy, V. A., Stets, O. S., Balalaev, O. K. (2013). Structure and properties of copper coatings electrodeposited from sulfuric acid solutions containing acrylic acid and acrylamide. Ukrainian Chemical Journal, 79(3), 51–58.

Vargalyuk, V. F., Polonskyy, V. A., Stets, O. S., Shchukin, A. І. (2015). Electrodeposition of copper in the presence of π-binding organic compounds. Modern problems of electrochemistry, 234–235.

Yanchak, А. I., Slyvka, Y. I., Kinzhybalo, V. V., Bednarchuk, T. J., Myskiv, M. G. (2019). The First Copper(I) Halide π-Complexes with Allyl Derivatives of Urea and Parabanic Acid. Voprosy khimii i khimicheskoi tekhnologii, 3, 67–73.https://doi.org/10.32434/0321-4095-2019-124-3-67-73

Slyvka, Y. I., Ardan, B. R., Mys’kiv, M. G. (2018). Copper(I) Chloride π-Complexes with 2,5-Bis (Allylthio)-1,3,4-Thiadiazole: Synthesis and Structural Features. Journal of Structural Chemistry, 59(2), 388–394. https://doi.org/10.1134/S0022476618020191

Ardan, B., Kinzhybalo, V., Slyvka, Y., Shyyka, O., Lukyanov, M., Lis, T., Myskiv, M. (2017). Ligand-forced dimerization of copper (I)–olefin complexes bearing a 1, 3, 4-thiadiazole core. Acta Crystallographica Section C: Structural Chemistry, 73(1), 36–46. https://doi.org/10.1107/S2053229616018751

Garasko, E. V., Tesakova, M. V., Chulovskaya, S. A., Parfenyuk, V. I. (2008). Application of nanosized copper-containing powders as effective biocidal preparations. Proceedings of higher educational institutions. Series: Chemistry and Chemical Technology, 51(10), 116–119.

Bararunyeretse, P., Beckford, H. O., Ji, H. (2019). Interactive Effect of Copper and Its Mineral Collectors on Soil Microbial Activity — A Microcalorimetric Analysis. Open Journal of Soil Science, 9(3), 47–64.https://doi.org/10.4236/ojss.2019.93003

Polova, Zh. M., Polova, Zh. N. (2016).Pre-treatment of antimicrobial activity of citrates of the medium and medium with the introduction of pharmaceutical preparations. Actual nutrition of pharmaceutical and medical science and practice, 1, 71–74. http://dx.doi.org/10.14739/2409-2932.2016.1.61435

Santini, C., Pellei, M., Gandin, V., Porchia, M., Tisato, F., Marzano, C. (2014). Advances in copper complexes as anticancer agents. Chemical reviews, 114(1), 815–862.https://doi.org/10.1021/cr400135x

Vargalyuk, V. F., Polonskyy, V. A., Stets, O. S., Stets, N. V., Shchukin, A. I. (2014). Microbiological properties of copper-based dispersion obtained by cathode precipitation in the presence of acrylic acid. Bulletin of Dnipropetrovsk University. Series: Chemistry,22(2),

–51. https://doi.org/10.15421/081420

Vargalyuk, V. V., Osokin, Y. S., Polonskyy, V. A., & Glushkov, V. N. (2019). Features of (dπ-pπ)-binding of Cu(I) ions with acrylic, maleic and fumaric acids in aqueous solution. Journal of Chemistry and Technologies, 27(2), 148–157. https://doi.org/10.15421/081916

Shwartsenbakh, G., Flashka, G. (1970). Complexonometric Titration. Moscow, Khimya,

–181.

Balagurunathan, Y., Dougherty, E. R., Frančišković-Bilinski, S., Bilinski, H., Vdović, N. (2001). Morphological granulometric analysis of sediment images. Image Analysis & Stereology, 20(2), 87–99. https://doi.org/10.5566/ias.v20.p87-99

Akpanbaev, R. S. (2013). [Investigation of the process of electrolytic production of finely dispersed copper powder in the presence of modifying organic compounds] (Unpublished PhD dissertation). Almaaty (in Russian).

Viswanath, S. G., Jachak, M. M. (2013). Electrodeposition of copper powder from copper sulphate solution in presence of glycerol and sulphuric acid. Metallurgical and Materials Engineering, 19(2), 119–135.

Published

2021-01-10

Issue

Section

Physical and inorganic chemistry