• Viktor F. Vargalyuk Oles Honchar Dnipro National University
  • Volodymyr A. Polonskyy Днипровский национальный университет имени Олеся Гончара
  • Yevhen S. Osokin Днипровский национальный университет имени Олеся Гончара
  • Arina Y. Skok Днипровский национальный университет имени Олеся Гончара



copper microdispersion, zinc cementation, electrochemical deposition, maleic acid


Using chemical (zinc cementation) and electrochemical (cathodic deposition on titanium nitride) methods, copper microdispersions were obtained in the presence of maleic acid in an acidic solution CuSO4. It was complexonometrically established that electrochemically obtained copper powders are characterized by a high metal content (97.9 wt. %) and a small amount of non-metallic inclusions has been determined. But their dispersion under the action of maleic acid increases by an order of magnitude. The metal content is reduced to 39.7 wt. % in chemically obtained powders. The elemental composition of particles (wt. %) has been determined by energy-dispersive x-ray spectroscopy: C – 9.35, O – 25.76, Cu – 64.90. The presence of complexed water in the organometallic dispersion has been thermogravimetrically proved. These data, combined with the data of IR spectroscopy, led to the conclusion that the main component of the organometallic dispersion is the complex [Cu(C4H3O4)(H2O)2].

Author Biographies

Viktor F. Vargalyuk, Oles Honchar Dnipro National University

Декан химического факультета

Volodymyr A. Polonskyy, Днипровский национальный университет имени Олеся Гончара


Yevhen S. Osokin, Днипровский национальный университет имени Олеся Гончара


Arina Y. Skok, Днипровский национальный университет имени Олеся Гончара



Chauhan, P. K., Khan, S. (2020). Microstructural examination of aluminium-copper functionally graded material developed by powder metallurgy route. Materials Today: Proceedings,25, 833–837.

Xiao, Z., Geng, H., Sun, C., Jia, P., Luo, H. (2015). Effect of yttrium on properties of copper prepared by powder metallurgy. Advanced Powder Technology,26(4), 1079–1086.

Ponraj, N. V., Azhagurajan, A., Vettivel, S. C., Shajan, X. S., Nabhiraj, P. Y., Sivapragash, M. (2017). Graphene nanosheet as reinforcement agent in copper matrix composite by using powder metallurgy method. Surfaces and Interfaces, 6, 190–196.

Kuntiy, O. I. (2008). Electrochemistry and morphology of dispersed metals. Lviv: NU«LP».

Dume, T., Oya, M., Niimoto, D., Tsuboy, M. (2010). Antifouling paint formulation with a high non-volatile content. Russsian Patent No. 2401288 C2. Russsian.

Korepanov, D. A., Chirkova, N. M., Rudenok, V. A., Grabovsky, I. V., Sergeeva, E. A. (2013). Influence of a finely dispersed suspension based on a metal / carbon nanocomposite of copper on the sowing quality of seeds of Pinus silvestris L. Bulletin of the Udmurt University. Series «Biology. Earth Sciences», (2), 3–7.

Silva, F. S., Cinca, N., Dosta, S., Cano, I. G., Guilemany, J. M., Caires, C. S. A., Limac, A. R., Silvac, C. M., Oliveirac, S. L., Cairesc A. R. L., Benedetti, A. V. (2019). Corrosion resistance and antibacterial properties of copper coating deposited by cold gas spray. Surface and Coatings Technology, 361, 292–301.

Javadhesari, S. M., Alipour, S., Mohammadnejad, S., Akbarpour, M. R. (2019). Antibacterial activity of ultra-small copper oxide (II) nanoparticles synthesized by mechanochemical processing against S. aureus and E. coli. Materials Science and Engineering: C, 105, 110011.

Phan, D. N., Dorjjugder, N., Saito, Y., Khan, M. Q., Ullah, A., Bie, X., Taguchi, G., Kim, I. S. (2020). Antibacterial mechanisms of various copper species incorporated in polymeric nanofibers against bacteria. Materials Today Communications, 25, 101377.

Eshkalak, S. K., Khatibzadeh, M., Kowsari, E., Chinnappan, A., Ramakrishna, S. (2018). A novel surface modification of copper(II) phthalocyanine with ionic liquids as electronic ink. Dyes and Pigments, 154, 296–302.

Vargalyuk V. F., Polonskyy, V. A., Stets, O. S., Balalaev, O. K. (2013). Structure and properties of copper coatings electrodeposited from sulfuric acid solutions containing acrylic acid and acrylamide. Ukrainian Chemical Journal, 79(3), 51–58.

Vargalyuk, V. F., Polonskyy, V. A., Stets, O. S., Shchukin, A. І. (2015). Electrodeposition of copper in the presence of π-binding organic compounds. Modern problems of electrochemistry, 234–235.

Yanchak, А. I., Slyvka, Y. I., Kinzhybalo, V. V., Bednarchuk, T. J., Myskiv, M. G. (2019). The First Copper(I) Halide π-Complexes with Allyl Derivatives of Urea and Parabanic Acid. Voprosy khimii i khimicheskoi tekhnologii, 3, 67–73.

Slyvka, Y. I., Ardan, B. R., Mys’kiv, M. G. (2018). Copper(I) Chloride π-Complexes with 2,5-Bis (Allylthio)-1,3,4-Thiadiazole: Synthesis and Structural Features. Journal of Structural Chemistry, 59(2), 388–394.

Ardan, B., Kinzhybalo, V., Slyvka, Y., Shyyka, O., Lukyanov, M., Lis, T., Myskiv, M. (2017). Ligand-forced dimerization of copper (I)–olefin complexes bearing a 1, 3, 4-thiadiazole core. Acta Crystallographica Section C: Structural Chemistry, 73(1), 36–46.

Garasko, E. V., Tesakova, M. V., Chulovskaya, S. A., Parfenyuk, V. I. (2008). Application of nanosized copper-containing powders as effective biocidal preparations. Proceedings of higher educational institutions. Series: Chemistry and Chemical Technology, 51(10), 116–119.

Bararunyeretse, P., Beckford, H. O., Ji, H. (2019). Interactive Effect of Copper and Its Mineral Collectors on Soil Microbial Activity — A Microcalorimetric Analysis. Open Journal of Soil Science, 9(3), 47–64.

Polova, Zh. M., Polova, Zh. N. (2016).Pre-treatment of antimicrobial activity of citrates of the medium and medium with the introduction of pharmaceutical preparations. Actual nutrition of pharmaceutical and medical science and practice, 1, 71–74.

Santini, C., Pellei, M., Gandin, V., Porchia, M., Tisato, F., Marzano, C. (2014). Advances in copper complexes as anticancer agents. Chemical reviews, 114(1), 815–862.

Vargalyuk, V. F., Polonskyy, V. A., Stets, O. S., Stets, N. V., Shchukin, A. I. (2014). Microbiological properties of copper-based dispersion obtained by cathode precipitation in the presence of acrylic acid. Bulletin of Dnipropetrovsk University. Series: Chemistry,22(2),


Vargalyuk, V. V., Osokin, Y. S., Polonskyy, V. A., & Glushkov, V. N. (2019). Features of (dπ-pπ)-binding of Cu(I) ions with acrylic, maleic and fumaric acids in aqueous solution. Journal of Chemistry and Technologies, 27(2), 148–157.

Shwartsenbakh, G., Flashka, G. (1970). Complexonometric Titration. Moscow, Khimya,


Balagurunathan, Y., Dougherty, E. R., Frančišković-Bilinski, S., Bilinski, H., Vdović, N. (2001). Morphological granulometric analysis of sediment images. Image Analysis & Stereology, 20(2), 87–99.

Akpanbaev, R. S. (2013). [Investigation of the process of electrolytic production of finely dispersed copper powder in the presence of modifying organic compounds] (Unpublished PhD dissertation). Almaaty (in Russian).

Viswanath, S. G., Jachak, M. M. (2013). Electrodeposition of copper powder from copper sulphate solution in presence of glycerol and sulphuric acid. Metallurgical and Materials Engineering, 19(2), 119–135.





Physical and inorganic chemistry