SOME REACTIONS OF N-{3-[(ARYL-1-SULFONYL)IMINO]-6-OXOCYCLOHEXA-1,4-DIENЕ-1-YL}BENZAMIDES
DOI:
https://doi.org/10.15421/082026Keywords:
benzamide, quinone imine, hydrochlorination, hydrobromination, thiocyanate addition, bioactivity, thiocyanate, addition of hydrogen halides.Abstract
N-{3-[(Aryl-1-sulfonyl)imino]-6-oxocyclohexa-1,4-dienе-1-yl}benzamides have been synthesized by the reaction of the corresponding N-(4-oxocyclohexa-2,5-diene-1-ylidene)arylsulfonamides with N-chloramides with a ratio of reagents 1:2 in a solution of propan-2-one in the presence of triethylamine. The products of addition of hydrogen halides with the entry of halogen atoms in position 4 or 5 of the quinoid ring have been obtained as a result of hydrochlorination and hydrobromination of N-{3-[(aryl-1-sulfonyl)imino]-6-oxocyclohexa-1,4-diene-1-yl}benzamides. The possibility of hydrohalogenation and thiocyanation of these benzamides is determined by a steric factor. The presence of bulk substituents in the quinoid ring does not allow the introduction of a halogen atom in the 2 position of the quinoid ring. The product of aromatization of the quinoid cycle, N-{2-hydroxy-3,4-dimethyl-5-[(4-methylbenzene-1-sulfonyl)amino]phenyl}-4-methylbenzamide, was only obtained as a result of the action of hydrogen halides on 4-methyl-N-{4,5-dimethyl-3-[(4-methylbenzene-1-sulfonyl)imino]-6-oxocyclohexa-1,4-dienе-1-yl}benzamide. The thiocyanate ion addition product was obtained only for 4-chloro-N-{4-methyl-3-[(4-methylbenzene-1-sulfonyl)imino]-6-oxocyclohexa-1,4-dienе-1-yl}benzamide, which has a free ortho-position relative to the carbonyl carbon of the quinoid ring. The activities Insulysin inhibitor, CTGF expression inhibitor, Glutamyl endopeptidase II inhibitor, Transcription factor STAT3 inhibitor are possible for the products of hydrohalogenation and thiocyanation of N-{3-[(aryl-1-sulfonyl)imino]-6-oxocyclohexa-1,4-dienе-1-yl}benzamides.
References
Hernandes, M.Z., Cavalcanti, S.M.T., Moreira, D.R.M., de Azevedo, W.F., Junior, Leite, A.C.L. (2010). Halogen atoms in the modern medicinal chemistry: hints for the drug design Curr. Drug Targets., 11(3), 303–314. http://doi.org/10.2174/138945010790711996
Gribble G.W. (2004). Natural Organohalogens: A New Frontier for Medicinal Agents? J. Chem. Educ., 81(10), 1441–1449. http://doi.org/10.1021/ed081p1441
Huang, C.-H., Ren, F.-R., Shan, G.-Q., Qin, H., Mao, L., Zhu, B.-Z. (2015). Molecular Mechanism of Metal-Independent Decomposition of Organic Hydroperoxides by Halogenated Quinoid Carcinogens and the Potential Biological Implications. Chem. Res. Toxicol., 28(5), 831–837. http://doi.org/10.1021/tx500486z
Avdeenko, A. P., Konovalova, S. A. (2018). [Quinone imines: from anti-cancer drugs to molecular computers: monograph]. Kramatorsk, Ukraine: DSEA. ISBN 978-617-7415-40-3; 978-966-379-835-6. (In Russian)
Konovalova, S., Avdeenko, A. (2020) Biological Activity of Halogen-Containing Derivatives of N-Substituted Quinone Imines. Biointerface Res. Appl. Chem., 10(6), 7070–7076. https://doi.org/10.33263/BRIAC106.70707076
Dmitrikova, L. V., Kopteva, S. D., Markov, V. I. (2016). N-Alkylation of sulfonamides by alkyl halides in the presence of electrophilic catalysts and transformations of alkylated compounds. Bulletin of Dnipropetrovsk University. Series Chemistry., 24(2), 73–80. http://doi.org/10.15421/081610
Avdeenko, A. P., Konovalova, S. A. (2006). Halogenation of N-substituted para-quinone monoimine and para-quinone monooxime esters: V. Chlorination and bromination of N-arylsulfonyl-1,4-benzoquinone monoimines dialkyl-substituted in the quinoid ring. Russ. J. Org. Chem., 42(5), 669–682. https://doi.org/10.1134/S1070428006050058
Wang, Y. Zhu, S. Zou, L.‐H. (2019). Recent Advances in Direct Functionalization of Quinones. Eur. J. Org. Chem., 2019(12), 2179–2201. https://doi.org/10.1002/ejoc.201900028
Konovalova, S.A., Avdeenko, A.P., Lysenko, E.N. (2017). Synthesis of halogen derivatives of N-carbamoyl-1,4-benzoquinone monoimines. Voprosy Khimii i Khimicheskoi Tekhnologii, (4), 21–27. http://vhht.dp.ua/wp-content/uploads/pdf/2017/4/Konovalova.pdf
Konovalova, S.A., Avdeenko, A.P., Dʼyakonenko, V.V., Shishkina, S.V. (2020). Synthesis of 1,3-Benzoxathiol-2-one Derivatives from N-(4-Oxocyclohexa-2,5-dien-1-ylidene)ureas. Russ. J. Org. Chem., 56(4), 613–619. https://doi.org/10.1134/S1070428020040089
Lee, H. G., Cho, N., Jeong, A. J., Li, Y.-C., Rhie, S.-J., Choi, J. S., Lee, K.-H., Kim, Y., Kim, Y.-N., Kim, M.-H., Pae, A. N., Ye, S.-K., Kim B.-H. (2016). Immunomodulatory Activities of the Benzoxathiole Derivative BOT-4-One Ameliorate Pathogenic Skin Inflammation in Mice. J. Invest. Dermatol., 136(1), 107–116. https://doi.org/10.1038/JID.2015.384
Vellasco, W. T., Gomes, C. R. B., Vasconcelos, T. R. A. (2011). Chemistry and Biological Activities of 1,3-Benzoxathiol-2-ones. Mini-Rev. Org. Chem., 8(1), 103–109. http://doi.org/10.2174/157019311793979882
Mostert S., Petzer A., Petzer J. P. (2016). Mostert S. Inhibition of monoamine oxidase by benzoxathiolone analogues. Bioorg. Med. Chem. Lett., 26(4), 1200–1204. http://doi.org/10.1016/j.bmcl.2016.01.034
Chandler, J. D., Day, B. J. (2012). Thiocyanate: a potentially useful therapeutic agent with host defense and antioxidant properties. Biochem. Pharmacol., 84(11), 1381–1387. https://doi.org/10.1016/j.bcp.2012.07.029
Castanheiro, T., Suffert, J., Donnard, M., Gulea, M. (2016). Recent advances in the chemistry of organic thiocyanates. Chem. Soc. Rev., 45(3), 494–505. https://doi.org/10.1039/C5CS00532A
Tabong, C. D., Yufanyi, D. M., Paboudam, A. G., Nono, K. N., Eni, D. B., Agwara, M. O. (2016). Synthesis, Crystal Structure, and Antimicrobial Properties of [Diaquabis(hexamethylenetetramine)diisothiocyanato-κN]nickel(II) Complex. Adv. Chem., 2016, Article ID 5049718. https://doi.org/10.1155/2016/5049718
Ito, Y., Touyama, A., Uku, M., Egami, H., Hamashima, Y. (2019). Thiocyanation of Aromatic and Heteroaromatic Compounds with 1-Chloro-1,2-benziodoxol-3-(1H)-one and (Trimethylsilyl)isothiocyanate. Chem. Pharm. Bull., 67(9), 1015-1018. https://doi.org/10.1248/cpb.c19-00352
Bezverhij, N. P., Jakimenko, I. Ju., Harchenko, A. V. (2010). Interaction of N-arylsulfonylquinone imines with O-acylbenzhydroxamic acids. Voprosy Khimii i Khimicheskoi Tekhnologii, (3), 9–12. (in Russian) http://udhtu.edu.ua/public/userfiles/file/VHHT/2010/3/Bezverkhij.pdf
Asif, M. (2016). Pharmacological Potential of Benzamide Analogues and their Uses in Medicinal Chemistry. Mod. Chem. Appl., 4(4), ID article 1000194. https://doi.org/10.4172/2329-6798.1000194
Gao, X.-h., Liu, L.-b., Liu, H.-r., Tang, J.-j., Kang, L., Wu, H., Cui, P., Yan, J. (2018). Structure–activity relationship investigation of benzamide and picolinamide derivatives containing dimethylamine side chain as acetylcholinesterase inhibitors. J. Enzyme Inhib. Med. Chem., 33(1), 110–114. https://doi.org/10.1080/14756366.2017.1399885
Avdeenko, A. P., Konovalova, S. A., Ludchenko, O. N., Ledeneva, O. P., Vakulenko, A. V. (2011). Hydrohalogenation of N-Acetyl(aroyl)-1,4-benzoquinone Monoimines. Rus. J. Org. Chem., 47(2), 214–229. http://doi.org/10.1134/S1070428011020102
Burmistrov, K. S., Toropin, N. V., Burmistrov, S. I. (1993). Reaction of hydrogen bromide with N-aryl-1,4-benzoquinonemonoimines. Rus. J. Org. Chem., 29(6), 1170–1174. (in Russian)
Burmistrov, K. S., Murashevich, B. V., Toropin, N. V. (2011). Unusual addition of hydrogen chloride to N-substituted quinone imines. Russ. J. Org. Chem., 47(1), 140. https://doi.org/10.1134/S1070428011010180
Avdeenko, A. P., Konovalova, C. O., Bezverkhyi, M. P. (2013). Ukraine Patent No. 84243. Kyiv, Ukraine. Ukrainian Institute of Industrial Property.
Bron, M., Holze, R. (1995). Cyanate and thiocyanate adsorption at copper and gold electrodes as probed by in situ infrared and surface-enhanced Raman spectroscopy. J. Electroanal. Chem., 385(1), 105-113. https://doi.org/10.1016/0022-0728(94)03765-U
Blankenburg, L., Schroeder, L., Habenstein, F., Błasiak, B., Kottke, T., Bredenbeck, J. (2019). Following local light-induced structure changes and dynamics of the photoreceptor PYP with the thiocyanate IR label. Phys. Chem. Chem. Phys., 21(12), 6622-6634. https://doi.org/10.1039/C8CP05399E
Burmistrov, K. S., Toropin, N. V., Burmistrov, S. I., Nichvoloda, V. M. (1992). Interaction of N-(p-tolyl)-1,4-benzoquinone monoimine with thiocyanate acid. Russ. J. Org. Chem., 28(9), 1900–1904. (In Russian)
Huynh, M. T., Anson, C. W., Cavell, A. C., Stahl, S. S., Hammes-Schiffer, S. (2016). Quinone 1 e– and 2 e–/2 H+ Reduction Potentials: Identification and Analysis of Deviations from Systematic Scaling Relationships. J. Am. Chem. Soc., 138(49), 15903–15910. https://doi.org/10.1021/jacs.6b05797
Filimonov, D. A., Lagunin, A. A., Gloriozova, T. A., Rudik, A. V., Druzhilovskii, D. S., Pogodin, P. V., Poroikov, V. V. (2014). Prediction of the biological activity spectra of organic compounds using the pass online web resource. Chem. Heterocycl. Compd., 50(3), 444–457. https://doi.org/10.1007/s10593-014-1496-1
Bezverhij, N. P., Zinuhov, V. D., Kremlev, M. M., Kachanov, A. V., Litvinova, T. N. (1984). Amidation of N,N'-bis[aryl(alkyl)sulfonyl]benzoquinone diimines. Russ. J. Org. Chem., 20(5), 1040–1045. (in Russian)
Downloads
Published
Issue
Section
License
Copyright (c) 2021 Дніпровський національний університет імені Олеся Гончара
This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors reserve the right of attribution for the submitted manuscript, while transferring to the Journal the right to publish the article under the Creative Commons Attribution License. This license allows free distribution of the published work under the condition of proper attribution of the original authors and the initial publication source (i.e. the Journal)
- Authors have the right to enter into separate agreements for additional non-exclusive distribution of the work in the form it was published in the Journal (such as publishing the article on the institutional website or as a part of a monograph), provided the original publication in this Journal is properly referenced
- The Journal allows and encourages online publication of the manuscripts (such as on personal web pages), even when such a manuscript is still under editorial consideration, since it allows for a productive scientific discussion and better citation dynamics (see The Effect of Open Access).