drying, mathematical model of heat transfer, thermal energy, monodisperse layer.


This work is devoted to the study of the heat exchange process of drying and its mathematical interpretation, which is important both from the point of view of the theory of drying and its practical implementation. In this work, the drying process of hot candied fruit in a monodisperse layer was investigated. A technique for studying the filtration drying of a thermal agent through a hot monodisperse layer of rectangular particles was developed. The results of the dependence of the change in the temperature of the thermal agent over time and along the height of the candied fruit layer were obtained. The mechanism of heat and mass transfer in a hot monodisperse layer of rectangular particles was substantiated. It is proved that when drying in a stationary layer, there is simultaneously a dry layer of material with the temperature of a thermal agent, which accumulates thermal energy and a wet layer of material with a lower temperature value. The solution of the mathematical problem of temperature distribution along the height of a monodisperse layer is given. This allows you to: determine the temperature of thermal agent by height and time. There is an established mathematical model of the heat transfer process during drying based on the above solution. The basis of this solution: a heat source is evenly distributed in the material layer. The mathematical description of the temperature field in the layer is in dimensionless criteria and is an exponential dependence. The experimental results and calculation results are shown in the graphs. The calculation model is adequate, the error between the experimental and theoretical data does not exceed 7 %. The adequacy of the model is established for small values of dimensionless heights. Good agreement between the calculated and experimental results allows us to determine the temperature distribution along the height of the monodispersed layer, using various ratios. This is important for predicting the drying process and for calculating new energy-saving drying technologies.

Author Biographies

Iryna О. Huzova, Національний університет "Львівська політехніка"

доцент, кафедра хімічної інженерії

Volodymyr М. Atamanyuk, Національний університет "Львівська політехніка"

зав. кафедри хімічної інженерії


Kaldybaeva, B. M., Khusanov, A. E., Dmitriev, E. A., Sabyrkhanov, D. S., & Abilmagzhanov, A. Z. (2016). Modelling with simultaneous phase transfer chemisorption of hydrogen sulfide and carbon dioxide in the chemisorption apparatus. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 6(420), 178–184.

Snezhkin, Y.F., Bileka, B.D. (2020). Use of Combined Cogeneration–Thermal Pumping Plants for Municipal Heat Power Engineering and Heat Technologies. Journal of Engineering Physics and Thermophysics, 93, 376–383.

Bezsonov, O., Ilyunin, O., Kaldybaeva, B., Selyakov, O., Perevertaylenko, O., Khusanov, A., Rudenko, O., Udovenko, S., Shamraev, A., Zorenko, V. (2019). Resource and energy saving neural network-based control approach for continuous carbon steel pickling process. Journal of Sustainable Development of Energy, Water and Environment Systems, 7(2), 275–292. / 10.13044/j.sdewes.d6.0249

Guz'ova, I. O., Atamanjuk, V. M., Mykychak, B. M., Zejnalijeva, Ju. G. (2015). Doslidzhennja zmin temperaturnyh rezhymiv procesu sushinnja u vyrobnyctvi cukativ z garbuza. Naukovi praci ONAHT, 47(2), 46 – 51. (in Ukrainian)

Fiorentin, L. D., Menon, B. T., Alves, J. A., Davantel de Barros, S. T., Pereira, N. C., Módenes, A. N. (2010). Determination of drying kinetics and isotherms of orange bagasse. Acta Scientiarum: Technology, 32(2), 147 – 152.

Leila D. Fiorentin, Bruna T. Menon, Sueli T. D. de Barros, Nehemias C. Pereira, Oswaldo C. da M. Lima, Aparecido N. (2010). Isotermas de sorção do resíduo agroindustrial bagaço de laranja [Sorption isotherm of agricultural residue of orange bagasse]. Modenes Revista Brasileira de Engenharia Agrícola e Ambiental - Agriambi, 14(6), 653-659. (in Portuguese)

Tsurkan, O., Gerasimov, O., Polyevoda, Y., Tverdokhlib, I., Rimar, T., Stanislavchuk, O. (2017). Kinetic features of vibrating and filtration dewatering of fresh-peeled pumpkin seeds. INMATEH – Agricultural Engineering, , 52(2), 69 – 76.

Kaletnik, G., Tsurkan, O., Rimar, T., Stanislavchuk, O. (2020). Dtermination of the kinetics of the process of pumpkin seeds vibrational convective drying, 8, 50–57. /10.15587/1729-4061.2020.195203

Nikitenko, N.I., Snezhkin, Ju.F., Sorokovaja, N.N. (2011). [Matematicheskaja model' i metod rascheta dinamiki nepreryvnoj sushki]. Naukovi praci, ONAHT, 47(2), 46–51. (in Russian)

Nikitenko, N.I., Snezhkin, Ju.F., Sorokovaja, N.N. (2013). [Matematicheskoe modelirovanie dinamiki obezvozhivanija v konvektivnyh sushil'nyh ustanovkah nepreryvnogo dejstvija]. Naukovi praci, ONAHT, 43(1), 26 – 32. (in Russian)

Nikitenko, N.I., Snezhkin, Ju.F., Sorokova, N.M. (2013). [Matematychne modeljuvannja dynamiky znevodnennja v konvektyvnyh sushyl'nyh ustanovkah bezperervnoi' dii]. Visnyk nacional'nogo universytetu «L'vivs'ka politehshka», 761, 265-269. (in Ukrainian)

Korinchuk, D.N., Snezhkin, Y.F. (2018). Simulation of the High-Temperature Drying of a Composite Mixture in an Air Drier for Production of a Biocombustible. Journal of Engineering Physics and Thermophysics, 91, 1155–1164.

Sorokovaya, N.N., Snezhkin, Y.F., Shapar’, R.A., Sorokovoi, R.Y. (2019). Mathematical Simulation and Optimization of the Continuous Drying of Thermolabile Materials. Journal of Engineering Physics and Thermophysics, 92(5), 1180-1190

Gnativ, Z.Y., Ivashchuk, O.S., Hrynchuk, Y.M., Reutskyi, V.V., Koval, I.Z., Vashkurak, Y.Z.( 2020). Modeling of internal diffusion mass transfer during filtration drying of capillary-porous material. Mathematical Modeling and Computing, 7(1), 22–28 10.23939/mmc2020.01.022

Nikitenko, N.I., Snezhkin, Yu.F., Sorokovaya, N.N. (2006). Numerical method of the heat and mass transfer in different flows in a channel with penetrable walls. Journal of Engineering Physics and Thermophysics, 79(3), 512–523.

Nikitenko, N.I., Snezhkin, Ju.F., Sorokovaja, N.N. (2012). [Matematicheskoe modelirovanie dinamiki teplomassoperenosa i fazovyh prevrashhenij v adsorbere termichesko¬go transformatora cilindricheskoj formy]. Naukovi praci, ONAHT, 41(2), 191 – 197. (in Russian)

Atamanyuk, V., Gnativ, Z., Kinzera, D., Janabayev, D., Khusanov, A., Kaldybaeva, B. (2020). Hydrodynamics of cotton filtration drying, 14(3), 426–432.

Mykychak, B., Biley, P., Kindzera, D. (2013). External heat-and-mass transfer during drying of packed birch peeled veneer. Chemistry and Chemical Technology, 7(2), 191–195.

Matkivska, I., Atamanyuk, V., Symak, D. (2014). Basic regularities of the filtration drying of wheat grain. Eastern-European Journal of Enterprise Technologies, 5(71), 14 – 18.

Matkivska, I., Gumnytskyi, Y., Atamanyuk V. (2014). Kinetics of Diffusion Mass Transfer during Filtration Drying of Grain Materials. Chemistry & Chemical Technology, 8(3), pp. 359 – 363.

Hosovsky, R., Kindzera, D., Atamanyuk, V. (2016). Diffusive Mass Transfer during Drying of Grinded Sunflower Stalks. Chemistry & Chemical Technology, 10(4), 459–463.

Atamanjuk, V. M. (2007). [Gidrodynamika i teplomasoobmin pid chas fil'tracijnogo sushinnja dyspersnyh materialiv] Dys…dok. tehn. Nauk, L.: NU «LP». (in Ukrainian)

Atamanyuk, V., Huzova, I., Gnativ, Z. (2018). Intensification of Drying Process During Activated Carbon Regeneration. Chemistry & Chemical Technology, 12(2), 263–271.

Atamanjuk, V. M. Gumnyc'kyj, Ja. M. (2009). [Matematychna model' procesu teploobminu pid chas drugogo periodu fil'tracijnogo sushinnja dyspersnyh materialiv]. Eastern-European Journal of Enterprise Technologies, 1/4(37), 20 – 24. (in Ukrainian)

Huzova, I. (2020). Investigation of the energy-saving method during candied fruits filtration drying. Periodica Polytechnica Chemical Engineering, 64(4), 555–561.