5-ARYL-7,8,9,10-TETRAHYDRO-5H-TETRAZOLO[1,5-а]THIOPYRANO[3,2-d]PYRIMIDINE 6,6-DIOXIDES – A NEW HETEROCYCLIC ENSEMBLE via MCR APPROACH

Authors

DOI:

https://doi.org/10.15421/jchemtech.v31i2.126304

Keywords:

azaheterocycles, sulfones, 5-aminotetrazole, microwave irradiation, multicomponent reactions (MCR)

Abstract

Tetrazoles are found broad applications in numerous fields such as in medicine, biochemistry, pharmacology, and in industry. Considering our continued interest in new azaheterocycles based on β-ketosulfones in this work a three-component heterocyclization of dihydro-2H-thiopyran-3(4H)-one-1,1-dioxide, 1H-tetrazol-5-amine, and aromatic aldehydes under microwave irradiation was studied. Regardless of the reaction conditions, 5-aryl-7,8,9,10-tetrahydro-5H-tetrazolo[1,5-a]thiopyrano[3,2-d]pyrimidine 6,6-dioxides were isolated as sole reaction products in good to excellent yields. To the best of our knowledge mentioned azaheterocycles are novel and previously not reported heterocyclic ensemble. Proposed structures were confirmed by spectral methods. Considering druglikeness we can conclude that compounds match parameters for Lipinski, Ghose, Veber, Egan and Muegge rules, and also correspond to the V class of acute toxicity. In silico screening of the biological profile of new derivatives showed adequate ADMET properties along with high (60 % and more) probability levels of activity against such pathogens/diseases as Candida albicans, Alphis gossypii, Tripomastigote Chagas, Tcruzi amastigota, Tcruzi epimastigota etc.

Author Biography

Vitalii A. Palchykov, Oles Honchar Dnipro National University

Старший научный сотрудник научно-исследовательской группы кафедры органической химии

References

Neochoritis, C. G., Zhao, T., Dömling, A. (2019). Tetrazoles via multicomponent reactions. Chem. Rev., 119, 1970–2042. https://doi.org/10.1021/acs.chemrev.8b00564

Pokhodylo, N. T., Tupychak, M. A., Palchykov, V. A. (2020). Dihydro-2H-thiopyran-3(4H)-one-1,1-dioxide – a new cyclic ketomethylenic reagent for the Dimroth-type 1,2,3-triazole synthesis. Synth. Commun., 50, 1835–1844. https://doi.org/10.1080/00397911.2020.1757113

Chabanenko, R. M., Mykolenko, S. Yu., Kozirev, E. K., Palchykov, V. A. (2018). Multigram scale synthesis of 3,4- and 3,6-dihydro-2H-thiopyran 1,1-dioxides and features of their NMR spectral behavior. Synth. Commun., 48, 2198–2205. https://doi.org/10.1080/00397911.2018.1486427

Palchikov, V. A., Gaponov, A. A., Chabanenko, R. M., Mykolenko, S. Yu. (2018). Synthesis of a New Spiro System: 1-Oxa-7-thia-4-azaspiro[4.5]decane 7,7-Dioxide. Russ. J. Org. Chem., 54, 588–592. https://doi.org/10.1134/S1070428018040127

Palchykov, V. A., Chabanenko, R. M., Konshin, V. V., Dotsenko, V. V., Krivokolysko, S. G., Chigorina, E. A., Horak, Y. I., Lytvyn, R. Z., Vakhula, A. A., Obushak, M. D., Mazepa, A. V. (2018). Dihydro-2H-thiopyran-3(4H)-one-1,1-dioxide – a versatile building block for the synthesis of new thiopyran-based heterocyclic systems. New J. Chem., 42, 1403–1412. https://doi.org/10.1039/C7NJ03846A

Kolomoets, O. S., Voskoboynik, O. Yu., Antypenko, O. M., Berest, G. G., Nosulenko, I. S., Palchikov, V. A., Karpenko, O. S., Kovalenko, S. I. (2017). Design synthesis and Anti-inflammatory Activity of Derivatives 10-R-3-Aryl-6,7-dihydro-2H-[1,2,4]triazino[2,3-c]quinazolin-2-ones of Spiro-fused Cyclic Frameworks. Acta Chim. Slov., 64, 902–910. https://doi.org/10.17344/acsi.2017.3575

Voskoboynik, O. Yu., Kolomoets, O. S., Palchikov, V. A., Kovalenko, S. I., Belenichev, I. F., Shishkina, S. V. (2017). [1,2,4]Triazino[2,3-с]quinazolines 2*. Synthesis, structure, and anticonvulsant activity of new 3'-R1-spiro[(aza/oxa/thia)cycloalkyl1(3,4),6'-[1,2,4]triazino[2,3-c]quinazolin]-2'(7'H)-ones. Chem. Het. Comp., 53, 1134–1147. https://doi.org/10.1007/s10593-017-2184-8

Mohlala, R. L., Rashamuse, T. J., Coyanis, E. M. (2023). Multicomponent reactions as an efficient and facile alternative route in organic synthesis and applications. Preprints. Org. 2023060345. https://doi.org/10.20944/preprints202306.0345.v1

Vishwakarma, R., Chandrakanth, G., Lakshmi, K. M. (2022) Advances in Tetrazole Synthesis – An Overview. Chem. Select, 7, e202200706. https://doi.org/10.1002/slct.202200706

John, E. S., Gulatia, Sh., Shankaraiah, N. (2021). Recent advances in multi-component reactions and their mechanistic insights: a triennium review. Org. Chem. Front., 8, 4237–4287. https://doi.org/10.1039/D0QO01480J

Kozirev, E. K., Palchykov, V. A. (2019). Thiopyran-3-one 1,1-dioxides in the synthesis of heterocycles. Chem. Heter. Comp. 55, 349–351. https://doi.org/10.1007/s10593-019-02463-z

Kour, P., Singh, V. P., Khajuria, B., Singh, T., Kumar, A. (2017). Al(III) chloride catalyzed multi-component domino strategy: synthesis of library of dihydrotetrazolo[1,5-a]pyrimidines and tetrahydrotetrazolo[1,5-a]quinazolinones. Tetrahedron Letters., 58, 4179–4185. https://doi.org/10.1016/j.tetlet.2017.09.052

Wang, X-S., Yang, K., Zhou, J., Tu, S-J. (2010). Facile Method for the Combinatorial Synthesis of 2,2-Disubstituted Quinazolin-4(1H)-one Derivatives Catalyzed by Iodine in Ionic Liquids. J. Comb. Chem. 12, 35–40. https://doi.org/10.1021/cc900174p

Shaik, F. B., Nagendra, T. P., Babu, V. G., Shanthi, V. K., Mulakayala, N., Anwar, Sh. (2019). An efficient, multicomponent, green protocol to access 4,7-dihydrotetrazolo[1,5-a]pyrimidines and 5,6,7,9-tetrahydrotetrazolo[5,1-b]quinazolin-8(4H)-ones using PEG-400 under microwave irradiation. Synth. Comm., 49, 3181–3190. https://doi.org/10.1080/00397911.2019.1659973

Antoine D., Olivier, M., Vincent, Z. (2017). SwissADME: a free web tool to evaluate pharmacokinetics, druglikeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7, 42717 https://doi.org/10.1038/srep42717

Banerjee, P., Andreas, O. E., Schrey, A. K., Preissner, R. (2018). ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Research, 46, W257–W263 https://doi.org/10.1093/nar/gky318

Scotti, M. T., Herrera-Acevedo, C., de Menezes, R. P. B., Martin, H-J., Muratov, E. N., Silva, Á.Í.d.S., Albuquerque, E. F., Calado, L. F., Ericsson, C.-B., Scotti, L. (2022). MolPredictX: online biological activity predictions by machine learning models. Mol. Inf. 41(12), e2200133. https://doi.org/10.1002/minf.202200133

Lipinski, C. A., Lombardo, F., Dominy, B. W., Feeney P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug. Deliv. Rev., 46, 3–26. https://doi.org/10.1016/s0169-409x(00)00129-0

Ghose, A. K., Viswanadhan, V. N., Wendoloski, J. J. (1999). A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. A qualitative and quantitative characterization of known drug databases. J. Comb. Chem., 1, 55–68. https://doi.org/10.1021/cc9800071

Veber, D. F., Johnson, S. R., Cheng, H-Y., Smith, B. R., Ward, K. W., Kopple, K. D. (2002). Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem., 45, 2615–2623. https://doi.org/10.1021/jm020017n

Egan, W. J., Merz, K. M., Baldwin J. J. (2000). Prediction of drug absorption using multivariate statistics. J. Med. Chem., 43, 3867–3877. https://doi.org/10.1021/jm000292e

Muegge, I., Heald, S. L., Brittelli, D. (2001). Simple selection criteria for drug-like chemical matter. J. Med. Chem., 44, 1841–1846. https://doi.org/10.1021/jm015507e

Downloads

Published

2023-07-25