VOLTAMMETRIC DETERMINATION OF VITAMIN B12 USING SOME AZO DYES
DOI:
https://doi.org/10.15421/jchemtech.v29i2.207847Abstract
The article is devoted to the study of the voltammetric activity of Co(II) in the presense of azo dyes with further using of the results obtained in analytical practice. The voltammetric behaviour of Со(II) complexes with eriochrome red B, eriochrome black T, kalces and 1-[(5-(3-nitrobenzyl)-1,3-thiazol-2-yl)diazenyl]naphthalen-2-ol was investigated using cyclic linear sweep voltammetry. The optimal conditions for complex formation were established. New peaks caused by the reduction of the Co(II)–azodye complex compounds are observed on the voltammograms. Sensitive and highly reproducible methods for cobalt determination were developed using the linear dependence of peaks height on metal concentration with limit of detection of 10-7 mol·L-1. The accuracy of the proposed method was assessed by the method of standard additions. The developed method was successfully applied for the determination of vitamin B12 in pharmaceutical formulations.
References
Vishnikin, A. B., Sidorova L. P., Voloboy A. O. (2019). Simultaneous spectrophotometric determination of food dyes in binary mixtures by H-point standard addition method. Journal of Chemistry and Technologies, 27(2), 276–284 https://doi.org/10.15421/081928
Chung, King-Thom (2016). Azo dyes and human health: A review. Journal of Environmental Science and Health, Part C Environmental Carcinogenesis and Ecotoxicology Reviews, 34(4), 233–261.
https://doi.org/10.1080/10590501.2016.1236602
Avci, G.A., Ozkinali, S., Ozluk, A., Avci, E., Kocaokutgen, H. (2012). Antimicrobial activities, absorption characteristics and tautomeric structures of o,o'-hydroxyazo dyes containing an acryloyloxy group and their chromium complexes. Hacettepe J. Biol. Chem., 40(2), 119–126.
Turan, N., Adiguzel, R., Buldurun, K., Bursal, E. (2016). Spectroscopic, thermal and antioxidant properties of novel mixed ligand-metal complexes obtained from saccharinate complexes and azodye ligand (mnppa). International Journal of Pharmacology, 12(2), 92–100. https://doi.org/10.3923/ijp.2016.92.100
Fizer, M., Sidey, V., Tupys, A., Ostapiuk, Y., Tymoshuk, O., Bazel, Y. (2017). On the structure of transition metals complexes with the new tridentate dye of thiazole series: Theoretical and experimental studies. Journal of Molecular Structure, 1149, 669–682. https://doi.org/10.1016/j.molstruc.2017.08.037
Pytlakowska, K., Kozik, V., Dabioch, M. (2013). Complex-forming organic ligands in cloud-point extraction of metal ions: a review. Talanta, 100, 202–228. http://dx.doi.org/10.1016/j.talanta.2013.02.037
Gaber, M., El-Ghamry, H.A., Fathalla, S.K. (2015). Ni(II), Pd(II) and Pt(II) complexes of (1H-1,2,4-triazole-3-ylimino)methyl]naphthalene-2-ol. Structural, spectroscopic, biological, cytotoxicity, antioxidant and DNA binding. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 139, 396–404. https://doi.org/10.1016/j.saa.2014.12.057
Niazi, A., Yazdanipour, A. (2008). Simultaneous spectrophotometric determination of cobalt, copper and nickel using 1-(2-thiazolylazo)-2-naphthol by chemometrics methods. Chinese Chem. Lett., 19, 860–864. https://doi.org/10.1016/j.cclet.2008.04.047
Gaber, M., Mansour, I. A., El-Sayed, Y. S. Y. (2007). Spectrophotometric, conductometric and thermal studies of Co(II), Ni(II) and Cu(II) complexes with 2-(2-hydroxynaphthylazo)-4-hydroxy-6-methyl-1,3-pyrimidine. Spectrochim. Acta A, 68, 305–311. https://doi.org/10.1016/j.saa.2006.11.035
Dinçalp, H., Toker, F., Durucasu, İ., Avcıbaşı, N., & Icli, S. (2007). New thiophene-based azo ligands containing azo methine group in the main chain for the determination of copper(II) ions. Dyes and Pigments, 75(1), 11–24.
https://doi.org/10.1016/j.dyepig.2006.05.015
Bazel, Y., Tupys, A., Ostapiuk, Y., Tymoshuk, O., Matiychuk, V. (2017). A green cloud-point microextraction method for spectrophotometric determination of Ni (II) ions with 1-[(5-benzyl-1,3-thiazol-2-yl)diazenyl]naphthalene-2-ol. Journal of Molecular Liquids, 242, 471–477.
https://doi.org/10.1016/j.molliq.2017.07.047
Tupys, A., Tymoshuk, O., Rydchuk, P. (2016). Spectrophotometric Investigation of Cu (II) Ions Interaction with 1-(5-Benzylthiazol-2-yl)azonaphthalen-2-ol. Chemistry & Chemical Technology, 10(1), 19–25.
https://doi.org/10.23939/chcht10.01.019
Bazel, Y., Tupys, A., Ostapiuk, Y., Tymoshuk, O., Imricha, J., Sandrejov, J. (2018). A simple non-extractive green method for the spectrophotometric sequential injection determination of copper(II) with novel thiazolylazo dyes. The Royal Society of Chemistry Advances, 8, 15940–15950.
https://doi.org/10.1039/c8ra02039f.
Terletskaya, A.V., Ievleva, O.S., Bogoslovskaya, T.A., Goncharuk, V.V. (2013). Selective Photometric Determination of Nickel, Cobal, and Zinc in Drinking and Natural Wat ers Using 1-(2-pyridylazo)-2-naphthol and Surfactants (SAS). J. Water Chem. Techno., 35(6), 246–252. https://doi.org/10.3103/S1063455X13060027
Tupys, A.M., Tymoshuk, O.S., Rydchuk, P.V. (2015). The Application of 1-(5-Benzylthiazol-2-yl)azonaphthalen-2-ol in Extraction-Photometric Analysis of the Main Soils Pollutants Content (Copper, Zinc, Cadmium and Lead). Methods and objects of chemical analysis, 10(2), 80–88. https://doi.org/10.17721/moca.2015.80-88
Chavan, S.S., Sawant, V.A. (2010). Synthesis, structural characterization, thermal and electrochemical studies of Mn(II), Co(II), Ni(II) and Cu(II) complexes containing thiazolylazo ligands. Journal of Molecular Structure, 965, 1–6. https://doi.org/10.1016/j.molstruc.2009.11.010
Shanthalakshmi, K., Belagali, S. L. (2009). Synthesis and spectrophotometric studies of some benzothiazolylazo dyes – determination of copper, zinc, cadmium, cobalt and nickel. Bulg. Chem. Commun., 41(4), 380–384.
Chavan, S.S., Yamgar, B.A., Bharate, B.G. (2013). Zn (II) and Cd(II)-azido/thiocyanato complexes with thiazolylazodye and triphenylphosphine: synthesis, characterization and fluorescence. J. Coord. Chem., 66(10), 1837–1846. http://dx.doi.org/10.1080/00958972.2013.791394
Tupys, A.M., Tymoshuk, O.S. (2015). Extraction-photometric determination of cadmium(II) using 1-(5-benzylthiazol-2-yl)azonaphthalen-2-ol. Bulletin of Dnipropetrovsk University, Series Chemistry, 23(1), 50–58. https://doi.org/10.15421/081507
Khan, S., Kazi, T.G., Soylak, M. (2014). Rapid ionic liquid-based ultrasound assisted dual magnetic microextraction to preconcentrate and separate cadmium-4-(2-thiazolylazo)-resorcinol complex from environmental and biological samples. Spectrochim. Acta A., 123, 194–199.
http://dx.doi.org/10.1016/j.saa.2013.12.065
Mahmoud, W.H., Omar, M.M., Sayed, F.N. (2016). Synthesis, spectral characterization, thermal, anticancer and antimicrobial studies of bidentate azodye metal complexes. Journal of Thermal Analysis and Calorimetry, 124(2), 1071–1089 https://doi.org/10.1007/s10973-015-5172-1
Tupys, A., Kalembkiewicz, J., Bazel, Y., Zapała, L., Dranka, M., Ostapiuk, Y., Tymoshuk, O., Woźnicka, E. (2017). 1-[(5-Benzyl-1,3-thiazol-2-yl)diazenyl]naph-thalene-2-ol: X-ray structure, spectroscopic characterization, dissociation studies and application in mercury(II) detection. J. Mol. Struct., 1127, 722–733. http://dx.doi.org/10.1016/j.molstruc.2016.07.119
Tupys, A., Tymoshuk, O. (2015). 1-(5-Benzylthiazol-2-yl)azonaphthalen-2-ol — a new reagent for the determination of Pd(II). Acta Chimica Slovaca, 8(1), 59–64. https://doi.org/10.1515/acs-2015-0011
Fedyshyn, O., Bazel, Y., Fizer, M., Sidey, V., Imrich, J., Vilkova, M., Barabash, O., Ostapiuk, Y., Tymoshuk, O. (2020). Spectroscopic and computational study of a new thiazolylazonaphthol dye1-[(5-(3-nitrobenzyl)-1,3-thiazol-2-yl)diazenyl]naphthalen-2-ol. J. Mol. Liquids, 304, 112713.
https://doi.org/10.1016/j.molliq.2020.112713
Tymoshuk, O. S., Fedyshyn, O. S., Oleksiv, L. V., Rydchuk, P. V., Patsai, I. O. (2019). A new method of control over the content of palladium in intermetallic alloys. Materials Science, 55, 455–459.
https://doi.org/10.1007/s11003-019-00325-9
Levitskaya, G. D., Timoshuk, S. V., Gritsai, V. M. (2003). [Oscillopolarography of palladium(II)-Tropeolin 0 complexes]. Journal of Analytical Chemistry, 58 (11), 1065-1068. https://doi.org/10.1023/A:10273853 06485 (in Russian).
Naser, N.A., Kahdim, K.H., Taha, D.N. (2012). Synthesis and Characterization of an Organic Reagent 4-(6-Bromo-2-Benzothiazolylazo) Pyrogallol and Its Analytical Application. J. Oleo Sci., 61, 387–392. https://doi.org/10.5650/jos.61387
Mohammed, H.J., Syhood, A.A. (2018). Spectrophotometric, thermal and determination of trace amount of palladium (II) nickel (II) and silver (I) by using pyrazolone azo derivative. J Anal Pharm Res., 7(4), 504‒511.
https://doi.org/10.15406/japlr.2018.07.00275
Rydchuk, M., Mykhalyna, G., Dobryanska, O., Korkuna, O., Vrublevska, T. (2011). Osmium assay in fixatives and stained rat tissues by means of acid and o,o′-dihydroxo substituted monoazo dyes and some flavonoids. Cent. Eur. J. Chem., 9(5), 886–895. https://doi.org/10.2478/s11532-011-0070-2
Shiri, S, Delpisheh, A, Haeri, A, Poornajaf, A, Khezeli, T, Badkiu, N. (2011). Floatation-spectrophotometric Determination of Thorium, Using Complex Formation with Eriochrome Cyanine R. Anal Chem Insights., 6, 1–6. https://doi.org/10.4137/ACI.S5949
Tvorynska, S., Josypčuk, B., Barek, J., Dubenska, L. (2019). Electrochemical behavior and sensitive methods of the voltammetric determination of food azo dyes amaranth and Allura Red AC on amalgam electrodes. Food Anal. Methods, 12, 409–421. https://doi.org/10.1007/s12161-018-1372-1
Al-Adilee, K.J., Abass, A.K., Taher, A.M. (2016). Synthesis of some transition metal complexes with new heterocyclic thiazolyl azodye and their uses as sensitizers in photo reactions. J. Mol. Struct., 1108, 378–397. https://doi.org/10.1016/j.molstruc.2015.11.038
Al-Sheikh, M., Medrasi, H. Y., Sadek, K. U., Mekheimer, R. A. (2014). Synthesis and Spectroscopic Properties of new azo dyes derived from 3-ethylthio-5-cyanomethyl-4-phenyl-1,2,4-triazole. Molecules, 19, 2993–3003 https://doi.org/10.3390/molecules19032993
Tupys, A.M. [Spektrofotometriya spoluk 1-(5-benzyl-2-il)azonaftalen-2-olu z ionamy perekhidnykh metaliv ta yikh zactosuvannya v analizi], Ushgorod, 2017. (in Ukrainen).
Herbert, V. (1988). Vitamin B-12: plant sources, requirements, and assay. The American Journal of Clinical Nutrition, 48(3), 852–858. https://doi.org/10.1093/ajcn/48.3.852
Karmi, O., Zayed, A., Baraghethi, S., Qadi, M., Ghanem, R. (2011). Measurement of Vitamin B12 concentration. A Review on available methods. The IIOAB Journal, 2(2), 23–32.
Firoj, Ahmed, Banoo, Rebecca, Ghazi, Muhammed Sayedur, Rahman, Md. Omar Fakur Khan (2003). A convenient colorimetric assay method for determination of vitamin B12 content in pharmaceutical preparation. J. Med. Sci, 3(2), 163–168. https://doi.org/10.3923/jms.2003.163.168
Adolfo, F. R., do Nascimento, P. C., Bohrer, D., de Carvalho, L. M., Viana, C., Guarda, A., Mattiazzi, P. (2016). Simultaneous determination of cobalt and nickel in vitamin B12 samples using high-resolution continuum source atomic absorption spectrometry. Talanta, 147, 241–245. https://doi.org/10.1016/j.talanta.2015.09.073
Tsiminis, G., Schartner, E. P., Brooks, J. L., Hutchinson, M. R. (2017). Measuring and tracking vitamin B12: A review of current methods with a focus on optical spectroscopy. Applied spectroscopy reviews, 52(5), 439–455. https://doi.org/10.1080/05704928.2016.1229325
Şükrü, K., Ülkü, Ü., Güler, S. (2020). Determination of Vitamin B12 Using Differential Pulse Polarography. American Journal of Analytical Chemistry, 11(5), 187–196.
https://doi.org/10.4236/ajac.2020.115014
Dubenskaya, L. O., Levitskaya, G. D., Poperechnaya, N. P., Tymoshuk, S. V., & Kopot’, O. V. (2005). Voltammetric Reduction of In(III)-Eriochrome Red B Complexes. Journal of Analytical Chemistry, 60(11), 1052–1055. https://doi.org/10.1007/s10809-005-0237-0
Downloads
Published
Issue
Section
License
Copyright (c) 2021 Днипровский национальный университет имени Олеся Гончара
This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors reserve the right of attribution for the submitted manuscript, while transferring to the Journal the right to publish the article under the Creative Commons Attribution License. This license allows free distribution of the published work under the condition of proper attribution of the original authors and the initial publication source (i.e. the Journal)
- Authors have the right to enter into separate agreements for additional non-exclusive distribution of the work in the form it was published in the Journal (such as publishing the article on the institutional website or as a part of a monograph), provided the original publication in this Journal is properly referenced
- The Journal allows and encourages online publication of the manuscripts (such as on personal web pages), even when such a manuscript is still under editorial consideration, since it allows for a productive scientific discussion and better citation dynamics (see The Effect of Open Access).