• Oleg I. Yurchenko V.N. Karazin Kharkiv National University, Ukraine
  • Tetyana V. Chernozhuk V.N. Karazin Kharkiv National University, Ukraine
  • Аlexandr N. Baklanov V.N. Karazin Kharkiv National University, Ukraine
  • Oleksii A. Kravchenko V.N. Karazin Kharkiv National University, Ukraine



медь, цинк, свинец, кадмий, ртуть, атомно – абсорбционная и атомно – эмиссионная с индуктивно – связанной плазмой спектроскопия, рентгенофлуоресцентный анализ, Тритон Х-100, ультразвуковая обработка, донное отложение, речная вода, метрологические характер


Methods of atomic absorption spectroscopy and atomic emission spectroscopy with inductively coupled plasma were used to determine the content of copper, cadmium, zinc and lead in the water of the Tigris River (Iraq). It is shown that the results of both methods are equally accurate, the difference between them is insignificant and is explained by a random error. The use of Triton X-100 made it possible to reduce the detection limits of metals by 1.5–5 times compared to the standard approach. The mercury content in bottom sediments was determined by the X-ray fluorescence method and the atomic absorption method of cold steam. The found concentration of mercury in the bottom sediments of the Tigris River exceeded, on average, 1.5-2 times the standard values established for it in Iraq (0.2 mg / kg). New reference materials of composition based on acetylacetonates of copper, zinc, cadmium, lead and mercury (I) dimedonate, metal β-diketonates made it possible to increase the precision and accuracy of measurements due to the similarity of the chemical composition of the analyzed and reference samples.

Author Biography

Аlexandr N. Baklanov, V.N. Karazin Kharkiv National University

Зав. кафедры охраны труда и экологической безопасности Украинской инженерно-педагогической академии, професор кафедры химической метрологии Харьковского национального университета имени В.Н. Каразина


Sim, S. F., Ling, T. Y., Nyanti, L., Gerunsin, N., Wong, Y. E., Kho, L. P. (2009). Assessment of heavy metals in water, sediment, and fishes of a large tropical hydroelectric dam in Sarawak, Malaysia. Journal of Chemistry. 5, (2), 2–10.

Förstner, U., Wittmann, G. T. W. (1984). Metal Pollution in the Aquatic Environment. Berlin: Springer.

Antolova, T., Zaruba, S., Šandrejová, J., Kocúrová, L., Vishnikin, A. B., Bazel`, Ya., Andruch, V., Balogh, I.S. (2016). Spectrophotometric determination of mercury using vortex-assisted liquid-liquid microextraction. Turkish J. Сhem. 40, 965–973.

Yurchenko, O. I., Chernozhuk, Т. V., Baklanov, A. N., Baklanova, L. V., Kravchenko, O. A. (2018). Analytical signal amplification technologies in sonoluminescence spectroscopy by double-frequency ultrasound. Methods Objects Chem. Anal., 13,(3), 103–109.

Kazantzi, V., Drosaki, E., Skok, A., Vishnikin, A. B., Anthemidis, A. (2019). Evaluation of polypropylene and polyethylene as sorbent packing materials in on-line preconcentration columns for trace Pb(II) and Cd(II) determination by FAAS. Microchem J., 148, 514–520.

Sukharev, S. N. (2012). Determination of heavy metals in natural water by the sorption-atomic-absorption method. J. Water Chem. Technol., 34 (4), 190–194 (in Russian).

Goloperov, I. V., Belova, E. A., Baklanova, L. V., Baklanov, A. N. (2018). Improving food safety – increase of expressive analysis to toxic elements. ISJ Theoretical & Applied Science, 57(1), 260–265.

Baklanov, A. N., Chmilenko, F. A. (2001). Use of ultrasound in sample preparation for the determination of mercury species by cold-vapor atomic absorption spectrometry. J. Anal. Chem. 56(7), 641–646.

Yurchenko, O. I., Baklanova, L. V., Chernozhuk, T. V., Baklanov, O. M. (2018). Two frequency ultrasound in preparation of the samples of natural brines to determine mercury by “cold vapor” absorption. Kharkiv University. Chemical Series. 30(53), 58–66 (in Ukrainian).

Yurchenko, O. I., Gubskii, S. M., Chernozhuk, T. V., Baklanov, A. N., Kravchenko, O. A. (2020). Monitoring of content of sodium, potassium, calcium and magnesium in whey processed products (in Ukrainian). J. Chem. Technologies, 28(1), 27–33.

Chmilenko, F. A., Smityuk, N. M., Balkanov, A. N. (2002). Atomic absorption determination of metals in soils using ultrasonic sample preparation. J. Anal. Chem. 57(4), 313–318.

Yurchenko, O. I., Kalinenko, O. S., Baklanov, A. N., Belov, E. A., Balkanova, L. V. (2016). Sonoluminescence spectroscopy as a promising new analytical method. J. Appl. Spectrosc. 83(1), 784–787.

Vishnikin, A. B. (2005) Novel indirect spectrophotometric methods for determination of phosphate and arsenate using polyoxometalates and micellar medium. J. Molec. Liquids, 118(1-3), 51–55.

Rodriguez, J. C., Garcia, J. B., Latorre, C. H., Martin, S. G., Crecente, M. P. (2005). Direct and combined methods for the determination of chromium, copper, and nickel in honey by electrothermal atomic absorption spectroscopy. J. Agric. Food. Chem., 53(17), 6616–6623.

O`Neil, G. D., Newton, M. E., Macpherson, J. V. (2015). Direct identification and analysis of heavy metals in solution (Hg, Cu, Pb, Zn, Ni) using in-situ electrochemical X-ray fluorescence. Anal. Chem., 87(9), 4933–4940.

Hutton, L. A., O'Neil, G. D., Read, T. L., Ayres, Z. J., Newton, M. E., Macpherson, J. V. (2014). Electrochemical X‑ray fluorescence spectroscopy for trace heavy metal analysis: enhancing X‑ray fluorescence detection capabilities by four orders of magnitude. Anal. Chem., 86(9), 4566–4572.

Smith, M. G. (2000). Before the injection – modern methods of sample preparation for separation techniques. J. Chromatography A, 1000, 3–27.

Becker, J. S. (2005). Trace and ultratrace analysis in liquids by atomic spectrometry. TrAC Trends Anal. Chem. 24(3), 243–254.