ANALYSIS OF WATER AND BOTTOM SEDIMENTS OF THE TIGER RIVER (IRAQ) USING ULTRASONIC TREATMENT, NONIONIC SURFACE ACTIVE SUBSTANCES AND β-DIKETONATES OF METALS AS STANDARD SAMPLES

Authors

  • Oleg I. Yurchenko V.N. Karazin Kharkiv National University, Ukraine
  • Tetyana V. Chernozhuk V.N. Karazin Kharkiv National University, Ukraine
  • Аlexandr N. Baklanov V.N. Karazin Kharkiv National University, Ukraine http://orcid.org/0000-0001-9396-5204
  • Oleksii A. Kravchenko V.N. Karazin Kharkiv National University, Ukraine

DOI:

https://doi.org/10.15421/jchemtech.v29i2.214575

Keywords:

медь, цинк, свинец, кадмий, ртуть, атомно – абсорбционная и атомно – эмиссионная с индуктивно – связанной плазмой спектроскопия, рентгенофлуоресцентный анализ, Тритон Х-100, ультразвуковая обработка, донное отложение, речная вода, метрологические характер

Abstract

Methods of atomic absorption spectroscopy and atomic emission spectroscopy with inductively coupled plasma were used to determine the content of copper, cadmium, zinc and lead in the water of the Tigris River (Iraq). It is shown that the results of both methods are equally accurate, the difference between them is insignificant and is explained by a random error. The use of Triton X-100 made it possible to reduce the detection limits of metals by 1.5–5 times compared to the standard approach. The mercury content in bottom sediments was determined by the X-ray fluorescence method and the atomic absorption method of cold steam. The found concentration of mercury in the bottom sediments of the Tigris River exceeded, on average, 1.5-2 times the standard values established for it in Iraq (0.2 mg / kg). New reference materials of composition based on acetylacetonates of copper, zinc, cadmium, lead and mercury (I) dimedonate, metal β-diketonates made it possible to increase the precision and accuracy of measurements due to the similarity of the chemical composition of the analyzed and reference samples.

Author Biography

Аlexandr N. Baklanov, V.N. Karazin Kharkiv National University

Зав. кафедры охраны труда и экологической безопасности Украинской инженерно-педагогической академии, професор кафедры химической метрологии Харьковского национального университета имени В.Н. Каразина

References

Sim, S. F., Ling, T. Y., Nyanti, L., Gerunsin, N., Wong, Y. E., Kho, L. P. (2009). Assessment of heavy metals in water, sediment, and fishes of a large tropical hydroelectric dam in Sarawak, Malaysia. Journal of Chemistry. 5, (2), 2–10. https://doi.org/10.1155/2016/8923183

Förstner, U., Wittmann, G. T. W. (1984). Metal Pollution in the Aquatic Environment. Berlin: Springer.

Antolova, T., Zaruba, S., Šandrejová, J., Kocúrová, L., Vishnikin, A. B., Bazel`, Ya., Andruch, V., Balogh, I.S. (2016). Spectrophotometric determination of mercury using vortex-assisted liquid-liquid microextraction. Turkish J. Сhem. 40, 965–973. https://doi.org/10.3906/kim-1605-63

Yurchenko, O. I., Chernozhuk, Т. V., Baklanov, A. N., Baklanova, L. V., Kravchenko, O. A. (2018). Analytical signal amplification technologies in sonoluminescence spectroscopy by double-frequency ultrasound. Methods Objects Chem. Anal., 13,(3), 103–109.

https://doi.org/10.17721/moca.2018.103-109

Kazantzi, V., Drosaki, E., Skok, A., Vishnikin, A. B., Anthemidis, A. (2019). Evaluation of polypropylene and polyethylene as sorbent packing materials in on-line preconcentration columns for trace Pb(II) and Cd(II) determination by FAAS. Microchem J., 148, 514–520.

https://doi.org/10.1016/j.microc.2019.05.033

Sukharev, S. N. (2012). Determination of heavy metals in natural water by the sorption-atomic-absorption method. J. Water Chem. Technol., 34 (4), 190–194 (in Russian). https://doi.org/10.3103/S1063455X12040042

Goloperov, I. V., Belova, E. A., Baklanova, L. V., Baklanov, A. N. (2018). Improving food safety – increase of expressive analysis to toxic elements. ISJ Theoretical & Applied Science, 57(1), 260–265. https://doi.org/10.15863/tas.2018.01.57.42

Baklanov, A. N., Chmilenko, F. A. (2001). Use of ultrasound in sample preparation for the determination of mercury species by cold-vapor atomic absorption spectrometry. J. Anal. Chem. 56(7), 641–646. https://doi.org/10.1023/A:1016792205748

Yurchenko, O. I., Baklanova, L. V., Chernozhuk, T. V., Baklanov, O. M. (2018). Two frequency ultrasound in preparation of the samples of natural brines to determine mercury by “cold vapor” absorption. Kharkiv University. Chemical Series. 30(53), 58–66 (in Ukrainian). https://doi.org/10.26565/2220-637X-2018-30-06

Yurchenko, O. I., Gubskii, S. M., Chernozhuk, T. V., Baklanov, A. N., Kravchenko, O. A. (2020). Monitoring of content of sodium, potassium, calcium and magnesium in whey processed products (in Ukrainian). J. Chem. Technologies, 28(1), 27–33. https://doi.org/10.15421/082004

Chmilenko, F. A., Smityuk, N. M., Balkanov, A. N. (2002). Atomic absorption determination of metals in soils using ultrasonic sample preparation. J. Anal. Chem. 57(4), 313–318. https://doi.org/10.1023/A:1014946213773

Yurchenko, O. I., Kalinenko, O. S., Baklanov, A. N., Belov, E. A., Balkanova, L. V. (2016). Sonoluminescence spectroscopy as a promising new analytical method. J. Appl. Spectrosc. 83(1), 784–787. https://doi.org/10.1007/s10812-016-0250-0

Vishnikin, A. B. (2005) Novel indirect spectrophotometric methods for determination of phosphate and arsenate using polyoxometalates and micellar medium. J. Molec. Liquids, 118(1-3), 51–55. https://doi.org/10.1016/j.molliq.2004.07.012

Rodriguez, J. C., Garcia, J. B., Latorre, C. H., Martin, S. G., Crecente, M. P. (2005). Direct and combined methods for the determination of chromium, copper, and nickel in honey by electrothermal atomic absorption spectroscopy. J. Agric. Food. Chem., 53(17), 6616–6623.

https://doi.org/10.1021/jf050887o

O`Neil, G. D., Newton, M. E., Macpherson, J. V. (2015). Direct identification and analysis of heavy metals in solution (Hg, Cu, Pb, Zn, Ni) using in-situ electrochemical X-ray fluorescence. Anal. Chem., 87(9), 4933–4940.

https://doi.org/10.1021/acs.analchem.5b00597

Hutton, L. A., O'Neil, G. D., Read, T. L., Ayres, Z. J., Newton, M. E., Macpherson, J. V. (2014). Electrochemical X‑ray fluorescence spectroscopy for trace heavy metal analysis: enhancing X‑ray fluorescence detection capabilities by four orders of magnitude. Anal. Chem., 86(9), 4566–4572. https://doi.org/10.1021/ac500608d

Smith, M. G. (2000). Before the injection – modern methods of sample preparation for separation techniques. J. Chromatography A, 1000, 3–27. https://doi.org/10.1016/S0021-9673(03)00511-9

Becker, J. S. (2005). Trace and ultratrace analysis in liquids by atomic spectrometry. TrAC Trends Anal. Chem. 24(3), 243–254.

https://doi.org/10.1016/j.trac.2004.12.003

Published

2021-07-20