EXPERIMENTAL AND THEORETICAL INVESTIGATION OF THE PORE FORMATION PROCESS IN GAS-FILLED POLYMERIC MATERIALS

Authors

  • Volodymyr I. Sytar Ukrainian State University of Chemical Technology, Ukraine
  • Ivan M. Kuzyayev Ukrainian State University of Chemical Technology, Dnipro, Ukraine, Ukraine
  • Kostyantyn M. Sukhyy Ukrainian State University of Chemical Technology, Dnipro, Ukraine, Ukraine
  • Oleh S. Kabat ДВНЗ Український Державний Хіміко-Tехнологічний Університет, Ukraine https://orcid.org/0000-0001-7995-5333

DOI:

https://doi.org/10.15421/jchemtech.v29i2.222917

Keywords:

gas-filled polymeric materials; porophore; bubbles; technological processing; pressure; temperature; mathematical model.

Abstract

An analysis of experimental and theoretical studies of the process of pore formation in gas-filled polymeric materials has been carried out. Experimental studies by most authors have shown the dependences of the growth dynamics, morphology, and structure of bubbles in polymer melts, from which pores are formed in gas-filled polymer materials. It has been established that the process of bubble growth in polymer melts at a constant temperature proceeds almost indefinitely, which makes it possible to control the pore size in the resulting gas-filled polymer materials due to the time of their formation. It has been established that the size of bubbles in polymer melts increases with increasing temperature of melts, forming tools, and concentration of porophore and decreases with increasing pressure and melt viscosity. In theoretical studies, the main theories were reviewed to model and optimize the pore formation process in gas-filled polymer materials and to predict their properties, such as thermal conductivity and density. To analyze the behavior of bubbles in polymer melts (changes in the radius, bubble pressure), the optimal cylindrical coordinate system for this case was chosen. The Be Witte and Maxwell models were used to describe the process of pore formation in the gas-filled polymer materials. A mathematical model describing the dynamics of bubble growth in polymer melts for a two-layer system has been proposed.

Author Biography

Oleh S. Kabat, ДВНЗ Український Державний Хіміко-Tехнологічний Університет

Доцент кафедри інноваційної інженерії ДВНЗ “Український державний хіміко-технологічний університет”

References

Kabat O.S., Kharchenko B.G., Derkach A.D., Artemchuk V.V., Babenko V.G. (2019). Polymer composite materials based on fluoroplastic and a method for their preparation. Issues of Chemistry and Chemical Technology, 3, 116-122.

http://dx.doi.org/10.32434/0321-4095-2019-124-3-116-122.

Sytar V. I., Kuzyaev I.M., Byria A.I., Danilin D.S., Kholodilov O. V., Kabat O.S. (2004). Optimization of the triboengineering characteristics of a phenylon-based composition. Trenie i Iznos, 25(2), 219 – 222.

Kabat O. S., Heti K. V., Kovalenko I. L., Dudka A. М. Fillers on the silica base for polymer composites of constructional purpose. Journal of chemistry and technologies, 27(2), 247-254.

https://doi.org/10.15421/08192702

Chuhlanov, V.Yu., Panov, Yu.T., Sinyavin, A.V., Ermolaeva, E.V. (2008). [Gas-filled plastics: textbook]. Vladimir : Izd-vo Vladim.gos. un-ta (in Russian).

Klempner, D., Sendzharevich V. (2009). [Polymer foams and foaming technologies]. Sankt Peterburg : TsOP Professiya. (in Russian).

Markov A.V., Grechischeva N.Yu., Mescheryakov S.V., Esipov Yu.L., Krasnova O.Yu. (2014). [Prospects for the use of methyl formate as a blowing agent in the production of polyurethane foams and other foams (review)]. Plasticheskie massyi, 5-6. – 56. (in Russian).

Mamontov A.A. (2017). [Increasing the operational reliability of expanded polystyrene thermal insulation boards by reinforcing them with glass cloth materials]. Plasticheskie massyi, 7-8. – 51. (in Russian).

Panov Yu.T. (2007). [Features of obtaining polyolefin foams by the extrusion method]. Polimernyie materialyi: izdeliya, oborudovanie, tehnologii, 8, – 10. (in Russian).

Han C.D., Villamizar C.A. (1978). Studies on structural foam processing I. The rheology of foam extrusion. Polymer Engineering and Science, 18(9), 687 – 698. https://doi.org/10.1002/pen.760180904

Villamizar C.A., Han C.D. (1978). Studies on structural foam processing II. Bubble dynamics in foam injection molding. Polymer Engineering and Science, 18(9), 699 710. https://doi.org/10.1002/pen.760180905

Yoo H.J., Han C.D. (1981). Studies on structural foam processing III. Bubble dynamics in foam extrusion through a converging die. Polymer Engineering and Science, 21(2), 69–75.

https://doi.org/10.1002/pen.760210203

Wu D., Mend Q., Liu Y., Yumei D., Weihong C., Hong X., Dongyun R. (2003). In situ bubble-stretching dispersion mechanism for additives in polymers. Journal of polymer Science: Part B: Polymer Physics, 41(14), 1051–1058.

https://doi.org/10.1002/polb.10450

Meng Q., Wu D. (2004). A study of bubble inflation in polymers and its application. Physics Letters, A327, 61 66. https://doi.org/10.1016/j.physleta.2004.04.061

Youn J.R., Park H. (1999). Bubble growth in reaction injection molded parts foamed by ultrasonic excitation. Polym. Eng. Science, 39(3), 457 468.

https://doi.org/10.1002/pen.11435

Sidiropoulos V., Vlachopoulos J. (2005). Temperature gradients in blown film bubbles. Advances in Polymer Technology, 24(2), 83 90.

https://doi.org/10.1002/adv.20039

Wang L., Ganjyal G.M., Jones D.D., Weller C. L., Hanna M. (2005). Modeling of Bubble Growth Dynamics and Nonisothermal Expansion in Starch-Based Foams During Extrusion. Advances in Polymer Technology, 24(1), 29 45. https://doi.org/10.1002/adv.20030

Mitropetros K., Steinbach J. (2006). Single bubble ignition after shockwave impact. Chemical Engineering Science, 61(2), 397 416.

https://doi.org/10.1007/978-3-319-61491-5_14

Laakkonen M., Alopaeus V., Aittamaa J. (2006). Validation of bubble breakage, coalescence and mass transfer models for gas–liquid dispersion in agitated vessel. Chemical Engineering Science, 61(1), 218 228. https://doi.org/10.1016/j.ces.2004.11.066

Ekambara K., Dhotre M.T., Joshi J.B. (2005). CFD simulations of bubble column reactors: 1D, 2Dand 3Dapproach. Chemical Engineering Science, 60(23), 6733 6746.

https://doi.org/10.1016/j.ces.2005.05.047

Cui Z., Li Y., Ge Y., Fan L.S. (2005). Bubble modulation using acoustic standing waves in a bubbling system. Chemical Engineering Science, 60(22), 5971 5981.

https://doi.org/10.1016/j.ces.2005.03.060

Kornienko V.P., Shirshin K.V., Gorelov Yu.P., Kuznetsova A.V., Chervyakova G.N., Khokhlova T.A. (2013). [Poluchenie vspenennykh poliimidnykh materialov na osnove akrilonitrila i (met)akrilovoy kisloty]. Plasticheskie massy, 6, 14 18. (in Russian).

Lee C.H., Lee K.-J., Jeong H.G., Kim S.W. (2000). Growth of gas bubbles in the foam extrusion process. Advances in polymer technology, 19(2), 97 112.

https://doi.org/10.1002/(SICI)1098-2329(200022)19:2<97::AID-ADV3>3.0.CO;2-B

Coccorullo I., Di Maio L., Montesano S., Incarnato L. (2009). Theoretical and experimental study of foaming process with chain extended recycled PET. eXPRESS Polymer Letters, 3(2), 84 96. https://doi.org/10.3144/expresspolymlett.2009.12

Bhattacharya S., Gupta R.K., Jollands M., Bhattacharya S.N. (2009). Foaming behavior of high-melt strength polypropylene/clay nanocomposites. Polymer Engineering & Science, 49(10), 2070 2084. DOI: 10.1002/pen.21343

Tammaro D., D’Avino G., Di Maio E., Pasquino R., Villone M.M., Gonzales D., Groombridge M., Grizzuti N., Maffettone P.L. (2016). Validated modeling growth, impingement and retraction to predict cell-opening in thermoplastic foaming. Chemical Engineering Journal, 287, 492 502. https://doi.org/10.1016/j.cej.2015.11.034

Han, Ch. D. (1979). [Rheology in polymer processing]. Moskow : Himiya (in Russian).

Kuzyaev I.M., Sitar V.I., Sukhy K.M. (2021). [Modeling and optimization of parameters for obtaining gas-filled polymers: monograph]. Dnipro : SHEI UDKHTU (in Ukrainian).

Kuzyaev, I.M. (2005). [Analysis of the phenomena of pore formation in polymeric materials during extrusion processes]. Issues of Chemistry and Chemical Technology, 2, 125 135. (in Russian).

Yoo H.J., Han C.D. (1982). Oscillatory behavior of a gas bubble growing (or collapsing) in viscoelastic liquids. AIChE Journal, 28(6), 1002 1009.

https://doi.org/10.1002/aic.690280616

Amon M., Denson C.D. (1986). A study of the dynamics of foam growth: simplified analysis and experimental result for bulk density in structural foam molding. Polymer Engineering and Science, 26(3), 255 267. https://doi.org/10.1002/pen.760260311

Kuzyaev I.M. (2005). [Modeling pore formation in polymer melts]. Issues of Chemistry and Chemical Technology, 3, 128 134. (in Russian).

Kuzyaev I.M. (2008). Certificate of registration of copyright for the work No. 24135 Ukraine. State University "Ukrainian State Chemical and Technological University".(in Ukrainian).

Wu D., Mend Q., Liu Y., Ding Y., Chen W., Xu H., Ren D. (2003). Іn situ bubble-stretching dispersion mechanism for additives in polymers. Journal of polymer Science: Part B: Polymer Physics, 41(14), 1051 1058. https://doi.org/10.1002/polb.10450

Meng Q., Wu D. (2004). A study of bubble inflation in polymers and its application. Physics Letters, A327, 61 66. https://doi.org/10.1016/j.physleta.2004.04.061

Kuzyaev I.M. (2008). [Substantiation and construction of a basic theory for the separation of nanoaggregates in the preparation of polymer nanocomposites]. Issues of Chemistry and Chemical Technology, 5, 157 165. (in Russian).

Kuzyaev I.M. (2008). Certificate of registration of copyright for the work No. 24134 Ukraine. State University "Ukrainian State Chemical and Technological University".(in Ukrainian).

Kuzyaev I.M., Kuzyaeva S.I. (2005). [Analysis of pore formation processes in polymer melts under non-isothermal operating modes with software development based on the Mathcad package]. Issues of Chemistry and Chemical Technology, 5, 145 149. (in Russian).

Kuzyaev I.M. (2005). [Optimization of the structure of porous materials]. Issues of Chemistry and Chemical Technology, 6, 143 146. (in Russian).

Published

2021-07-21