CONTINUOUS CONVERSION OF FRUCTOSE INTO METHYL LACTATE OVER SnO2–ZnO/Al2O3 CATALYST

Authors

DOI:

https://doi.org/10.15421/082107

Abstract

The continuous conversion of fructose into methyl lactate on SnO2–ZnO/Al2O3 catalyst that may be of practical interest is efficiently performed. The supported 10SnO2–5ZnO/Al2O3 catalyst was obtained by a simple impregnation method of granular γ-Al2O3 with the aqueous solution of SnCl4 and Zn(OAc)2. The data on structural analysis, textural and acid-base parameters of synthesized samples are performed. The following optimal conditions for obtaining of 70% methyl lactate yield at 100% fructose conversion were found: use of 4.8 wt.% fructose solution in 80% aqueous methanol as initial mixture, reaction temperature of 180 °С at 3.0 МPа. Addition of Zn ions to catalyst content allows using the initial fructose mixture without potassium carbonate. 10SnO2–5ZnO/Al2O3 catalyst provides full fructose conversion at 70% methyl lactate selectivity for 6 h on stream. Spent catalyst after regeneration by washing at 120 °С restores initial activity.

References

Zhang, H., Hu, Y., Qi, L., He, J., Li, H., Yang, S. (2018). Chemocatalytic Production of Lactates from Biomass-Derived Sugars. Int. J. Chem. Eng., 1–18. https://doi.org/10.1155/2018/7617685

Lactic Acid Ester Market Size, Regional Outlook, Industry Analysis Report, Price Trends, Application Development Potential, Competitive Market Share & Forecast, 2020–2026.

https://www.gminsights.com/industry-analysis/lactic-acid-ester-market

Varvarin, A.M., Levytska, S. I., Mylin, A. M., Brei, V. V. (2020). Vapour-phase conversion of methyl lactate into lactide over TiO2/SiO2 catalyst at the lowered pressure. Catalysis and Petrochemistry. 30, 38–42. https://doi.org/10.15407/kataliz2020.30.038

Coszach, Ph., Mariage, P.-A. (2013). US Patent No 8592609(B2).

Hottois, D., Bruneau, A., Bogaert, J-C., Coszach,Ph. (2011). US Patent No0160480 (A1).

Taarning, E., Osmundsen, Ch. M., Yang, X., Voss, B., Andersen, S. I., Christensen, C. H. (2011) Zeolite-catalyzed biomass conversion to fuels and chemicals. Energy Environ. Sci., 4(3), 793–804. https://doi.org/10.1039/c004518g

Clippel, de F., Dusselier, M., Rompaey, R. V., Vanelderen, P., Dijkmans, J., Makshina, E., Giebeler, L., Oswald, S., Baron, G. V., Denayer, J. F. M., Pescarmona, P. P., Jacobs, P. A., Sels, B. F. (2012). Fast and Selective Sugar Conversionto Alkyl Lactate and Lactic Acid with Bifunctional Carbon−Silica Catalysts. J. Am. Chem. Soc., 134(24), 10089–10101.

https://doi.org/10.1021/ja301678w

Tolborg, S., Sdaba, I., Osmundsen, Ch. M., Fristrup, P., Holm, M. S., Taarning, E. (2015). Tin-containing Silicates: Alkali Salts Improve Methyl Lactate Yield from Sugars. ChemSusChem., 8(4), 613–617. https://doi.org/10.1002/cssc.201403057

Yang, L., Yang, X., Tian, E., Vattipalli, V., Fan, W., Lin, H. (2016). Mechanistic insights into the production of methyl lactate by catalytic conversion of carbohydrates on mesoporous Zr-SBA-15. J. Catal., 333, 207–216. https://doi.org/10.1016/j.jcat.2015.10.013

Zhang, J., Wang, L., Wang, G., Chen, F., Zhu, J., Wang, Ch., Bian, Ch., Pan, Sh., Xiao, F.-Sh. (2017). Hierarchical Sn-Beta Zeolite Catalyst for the Conversion of Sugars to Alkyl Lactates. ACS Sustainable Chem. Eng., 5(4), 3123–3131. https://doi.org/10.1021/acssuschemeng.6b02881

Van der Graaff, W. N. P., Mezari, G. Li, B., Pidko, E. A., Hensen, E. J. M. (2015). Synthesis of Sn-Beta with Exclusive and High Framework Sn Content. Chem.Cat.Chem., 7(7), 1152–1160. https://doi.org/10.1002/cctc.201403050

Verma, D., Insyani, R., Suh, Y.-W., Kim, S. M., Kime, S. K., Kim, J. (2017). Direct conversion of cellulose to high-yield methyl lactate over Ga-doped Zn/H-nanozeolite Y catalysts in supercritical methanol. Green Chem., 19(8), 1969–1982. https://doi.org/10.1039/c7gc00432j

Pighin, E., D´ıez, V. K., Cosimo J. I. Di. (2016). Synthesis of ethyl lactate from triose sugars on Sn/Al2O3 catalysts. Appl. Catal., 517, 151–160.

https://doi.org/10.1016/j.apcata.2016.03.007

Prudius, S. V., Hes, N. L., Brei, V. V. (2019). Conversion of D-Fructose into Ethyl Lactate Over a Supported SnO2–ZnO/Al2O3 Catalyst. Colloids Interfaces., 3(16), 1–8. https://doi.org/10.3390/colloids3010016

Prudius, S. V., Hes, N. L., Mylin, A. M., Brei, V. V. (2020). Conversion of fructose into methyl lactate over SnO2/Al2O3 catalyst in flow regime. Catalysis and Petrochemistry. 30, 43–47.

https://doi.org/10.15407/kataliz2020.30.043

Taarning, E., Saravanamurugan, S., Holm, М. S. (2009). European Patent No 2184270 (B1).

Padovan, D., Tolborg, S., Botti, L., Taarning, E., Sádaba, I., Hammond, C. (2018). Overcoming catalyst deactivation during the continuous conversion of sugars to chemicals: maximising the performance of Sn-Beta with a little drop of water. React. Chem. Eng., 3(2), 155–163. https://doi.org/10.1039/C7RE00180K

Onda, A., Ochi, T., Kajiyoshi, K., Yanagisawa, K. (2008). Lactic acid production from glucose over activated hydrotalcites as solid base catalysts in water. Catal. Commun., 9, 1050–1053.

https://doi.org/10.1016/j.catcom.2007.10.005

Kumar, A., Srivastava, R. (2020). Bi-functional magnesium silicate catalyzed glucose and furfural transformations to renewable chemicals. ChemCatChem., 12, 4807–4816.

https://doi.org/10.1002/cctc.202000711

Lu, X., Wang, L., Lu, X. (2018). Catalytic conversion of sugars to methyl lactate over Mg-MOF-74 in near-critical methanol solutions. Catal. Commun., 110, 23–27. https://doi.org/10.1016/j.catcom.2018.02.027

Dong, W., Shen, Z., Peng, B., Gu, M., Zhou, X., Xiang, B., Zhang, Y. (2016). Selective chemical conversion of sugars in aqueous solutions without alkali to lactic acid over a Zn-Sn-Beta Lewis acid-base catalyst. Sci. Rep., 6, 1–8. https://doi.org/10.1038/srep2671

Karmaoui, M., Jorge, A. B., McMillan, P. F., Aliev, A. E., Pullar, R. C., Labrincha, J. A., Tobaldi, D. M.(2018). One-step synthesis, structure, and band gap properties of SnO2 nanoparticles made by a low temperature nonaqueous sol−gel technique. ACS Omega, 3, 13227–13238. https://doi.org/10.1021/acsomega.8b02122

Samanta, P. K., Saha, A., Kamilya, T. (2014). Chemical Synthesis and Optical Properties of ZnO Nanoparticles. J. Nano-Electron. Phys., 8(4), 04015.

https://jnep.sumdu.edu.ua/en/component/content/full_article/1339

Chayed, N. F., Badar, N., Rusdi, R., Kamarudin, N., Kamarulzaman, N. (2011). Optical band gap energies of magnesium oxide (MgO) thin film and spherical nanostructures. AIP Conf. Proc., 1400, 328–332. https://doi.org/10.1063/1.3663137

Cheng, Z., Everhart, J. L., Tsilomelekis, G., Nikolakis, V., Saha, B., Vlachos, D. G. (2018). Structural analysis of humins formed in the Brønsted-catalyzed dehydration of fructose. Green Chem., 20(5), 997–1006. https://doi.org/10.1039/C7GC03054A

Hoang, T. M. C., Eck, E. R. H., Bula, W. P., Gardeniers, J. G. E., Lefferts, L., Seshan, K. (2014). Humin based by-products from biomass processing as a potential carbonaceous source for synthesis gas production. Green Chem., 17(2), 959–972.

https://doi.org/10.1039/c4gc01324g

Shi, N., Liu, Q., Cen, H., Ju, R., He, X., Ma, L. (2020). Formation of humins during degradation of carbohydrates and furfural derivatives in various solvents. Biomass Convers. Biorefin., 10, 277-287. https://doi.org/10.1007/s13399-019-00414-4

K. Tanabe. (1970). Solid Acids and Bases: Their Catalytic Properties. Academic Press: New York, London.

Downloads

Published

2021-04-25

Issue

Section

Physical and inorganic chemistry