SYNTHESIS OF HYDROXYAPATITE USING VARIOUS SACCHARATE TYPES

Authors

  • Alla О. Serhiienko National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute»
  • Tetiana А. Dontsova National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute»
  • Tetiana Ye. Mitchenko National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute»
  • Svitlana V. Nahirniak National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute»
  • Olena I. Yanushevska National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute»
  • Andryi V. Lapinskyi National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute» http://orcid.org/0000-0001-9186-9438

DOI:

https://doi.org/10.15421/082103

Keywords:

nanocrystalline hydroxyapatite; calcium sucrate; calcium dextrate; сhemical precipitation; low temperature synthesis

Abstract

The work considers the preparation of hydroxyapatite from calcium sucrate and calcium dextrates solutions by chemical precipitation. It has been shown that the use of calcium sucrate makes it possible to obtain the pure hydroxyapatite phase even without further heat treatment of the precipitate. The IR spectroscopic studies confirm the obtaining of the pure hydroxyapatite phase with carbonate-ions substitution by B-type in HAp samples. The synthesis with a low temperature dextrin leads to the production of hydroxyapatite with a small admixture of tricalcium phosphate, a further increase in temperature also leads to the production of pure hydroxyapatite. According to the X-ray analysis, all the obtained hydroxyapatite powders are characterized by the crystallite size in the nanoscale. Obtained SEM images of the powders indicate compact hydroxyapatite aggregates with the sizes of 5-30 microns when using calcium sucrate complexes  and loose particles in the range of 1-20 microns when using dextrin.

Author Biography

Andryi V. Lapinskyi, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute»

Кафедра технології неорганічних речовин, водоочищення та загальної хімічної технології, сташий викладач

References

Rahyussalim, A. J., Marsetio, A. F., Saleh, I., Kurniawati, T., Whulanza, Y. (2016). The Needs of Current Implant Technology in Orthopaedic Prosthesis Biomaterials Application to Reduce Prosthesis Failure Rate. Journal of Nanomaterials, 2016, 1–9.

https://doi.org/10.1155/2016/5386924

Danilchenko, S.N. (2007). [Struktura i svoystva apatitov kaltsiya s tochki zreniya biomineralogii i biomaterialovedeniya (Obzor)]. Bulletin of the Sumy State University. Series Physics, Mathematics, Mechanics 2, 33–59. (In Russian).

White, T. J., ZhiLi, D. (2003). Structural derivation and crystal chemistry of apatites. Acta Crystallographica Section B Structural Science, 59(1), 1–16. https://doi.org/10.1107/s0108768102019894

Boudemagh, D., Venturini, P., Fleutot, S., Cleymand, F. (2018). Elaboration of hydroxyapatite nanoparticles and chitosan/hydroxyapatite composites: a present status. Polymer Bulletin, 76(5), 2621–2653. https://doi.org/10.1007/s00289-018-2483-y

Ptáček, P. (2016). Introduction to Apatites. In P. Ptáček (Eds.), Apatites and Their Synthetic Analogues. Synthesis, Structure, Properties and Applications. https://doi.org/10.5772/62208

Wiglusz, R. J., Pozniak, B., Zawisza, K., Pazik, R. (2015). An up-converting HAP@β-TCP nanocomposite activated with Er3+/Yb3+ ion pairs for bio-related applications. RSC Advances, 5(35), 27610–27622. https://doi.org/10.1039/c5ra00675a

Anwar, A., Kanwal, Q., Akbar, S., Munawar, A., Durrani, A., Hassan Farooq, M. (2017). Synthesis and characterization of pure and nanosized hydroxyapatite bioceramics. Nanotechnology Reviews, 6(2), 149–157. https://doi.org/10.1515/ntrev-2016-0020

Michał, W., Ewa, D., Tomasz, C. (2015). Lecithin-based wet chemical precipitation of hydroxyapatite nanoparticles. Colloid and Polymer Science, 293(5), 1561–1568. https://doi.org/10.1007/s00396-015-3557-0

Resmim, C. M., Dalpasquale, M., Vielmo, N. I., Mariani, F. Q., Villalba, J. C., Anaissi, F. J., Caetano, M. M., Tusi, M. M. (2018). Study of physico-chemical properties and in vitro antimicrobial activity of hydroxyapatites obtained from bone calcination. Progress in Biomaterials, 8(1), 1–9. https://doi.org/10.1007/s40204-018-0105-2

Cestari, A. (2016). Sol-gel methods for synthesis of aluminosilicates for dental applications. Journal of Dentistry, 55, 105–113.

https://doi.org/10.1016/j.jdent.2016.10.012

Dontsova, T. A., Nahirniak, S. V., Astrelin, I. M. (2019). Metaloxide Nanomaterials and Nanocomposites of Ecological Purpose. Journal of Nanomaterials, 2019, 1–31. https://doi.org/10.1155/2019/5942194

Manafi, S. A., Khani, S., Soltanmoradi, A. (2010). Synthesis of peculiar structure of hydroxyapatite nanorods by hydrothermal condition for biomedical applications. Iranian Journal of Pharmaceutical Sciences Winter, 7(1), 37–42.

Suchanek, K., Bartkowiak, A., Perzanowski, M., Marszałek, M. (2018). From monetite plate to hydroxyapatite nanofibers by monoethanolamine assisted hydrothermal approach. Scientific Reports, 8(1), 15408. https://doi.org/10.1038/s41598-018-33936-4

Mochales, C., Briak-BenAbdeslam, H. E., Ginebra, M. P., Terol, A., Planell, J. A., Boudeville, P. (2004). Dry mechanochemical synthesis of hydroxyapatites from DCPD and CaO: influence of instrumental parameters on the reaction kinetics. Biomaterials, 25(7-8), 1151–1158. https://doi.org/10.1016/j.biomaterials.2003.08.002

Harilal, M., Saikiran, A., Rameshbabu, N. (2018). Experimental Investigation on Synthesis of Nanocrystalline Hydroxyapatite by the Mechanochemical Method. Key Engineering Materials, 775, 149–155.

https://doi.org/10.4028/www.scientific.net/kem.775.149

Shu, C., Yanwei, W., Hong, L., Zhengzheng, P., Kangde, Y. (2005). Synthesis of carbonated hydroxyapatite nanofibers by mechanochemical methods. Ceramics International, 31(1), 135–138.

https://doi.org/10.1016/j.ceramint.2004.04.012

Petranovskaya, A. L., Turelik, M. P., Pilipchuk, E. V., Gorbik, P. P., Korduban, A. M., Ivasishyn, O. M. (2013) [Formirovanie biomimeticheskogo gidroksiapatita na poverhnosti titana]. Metallofizika i noveyshie tehnologii, 35, 1567–1584 (In Russian).

Rodríguez-Lugo, V., Karthik, T. V., Mendoza-Anaya, D., Rubio-Rosas, E., Villaseñor Cerón, L. S., Reyes-Valderrama, M. I., Salinas-Rodríguez, E. (2018). Wet chemical synthesis of nanocrystalline hydroxyapatite flakes: effect of pH and sintering temperature on structural and morphological properties. Royal Society Open Science, 5(8), 180962.

https://doi.org/10.1098/rsos.180962

Safronova, T. V., Putlyaev, V. I., Sergeeva, A. I., Kunenkov, E. V., Tret’yakov, Y. D. (2009). Synthesis of nanocrystalline calcium hydroxyapatite from calcium saccharates and ammonium hydrogen phosphate. Doklady Chemistry, 426(2), 118–123. https://doi.org/10.1134/s0012500809060020

Voitko, Z., Serhiienko, A., Dontsova, T., Nahirniak, S., Lapinskyi, A. (2020). Synthesis of HA–Collagen and HA–Collagen–Alginate Nanocomposites. Springer Proceedings in Physics, 709–718.

https://doi.org/10.1007/978-3-030-51905-6_48

Dontsova, T. A., Nagirnyak, S. V., Zhorov, V. V., Yasiievych, Y. V. (2017). SnO2 Nanostructures: Effect of Processing Parameters on Their Structural and Functional Properties. Nanoscale Research Letters, 12(1), 332. https://doi.org/10.1186/s11671-017-2100-2

Abifarin, J. K., Obada, D. O., Dauda, E. T., Dodoo-Arhin, D. (2019). Experimental data on the characterization of hydroxyapatite synthesized from biowastes. Data in Brief, 26, 104485.

https://doi.org/10.1016/j.dib.2019.104485

Ashwitha, A., Thamizharasan, K., Bhatt, P. (2020). Optimization of hydroxyapatite (HAp) extraction from scales of Sardinella longiceps and its conjugative effect with immunostimulants. SN Applied Sciences, 2(7), 1220. https://doi.org/10.1007/s42452-020-3057-9

Ratner, B. D., Hoffman, A., Schoen, F., Lemons, J. (2004). Biomaterials science an introduction to materials in medicine. Elsevier Academic Press.

Raynaud, S., Champion, E., Bernache-Assollant, D., Thomas, P. (2002). Calcium phosphate apatites with variable Ca/P atomic ratio I. Synthesis, characterisation and thermal stability of powders. Biomaterials, 23(4), 1065–1072. https://doi.org/10.1016/s0142-9612(01)00218-6

Downloads

Published

2021-04-25

Issue

Section

Physical and inorganic chemistry