• Alla О. Serhiienko National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Ukraine
  • Tetiana А. Dontsova National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Ukraine
  • Tetiana Ye. Mitchenko National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Ukraine
  • Svitlana V. Nahirniak National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Ukraine
  • Olena I. Yanushevska National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Ukraine
  • Andryi V. Lapinskyi National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Ukraine



nanocrystalline hydroxyapatite; calcium sucrate; calcium dextrate; сhemical precipitation; low temperature synthesis


The work considers the preparation of hydroxyapatite from calcium sucrate and calcium dextrates solutions by chemical precipitation. It has been shown that the use of calcium sucrate makes it possible to obtain the pure hydroxyapatite phase even without further heat treatment of the precipitate. The IR spectroscopic studies confirm the obtaining of the pure hydroxyapatite phase with carbonate-ions substitution by B-type in HAp samples. The synthesis with a low temperature dextrin leads to the production of hydroxyapatite with a small admixture of tricalcium phosphate, a further increase in temperature also leads to the production of pure hydroxyapatite. According to the X-ray analysis, all the obtained hydroxyapatite powders are characterized by the crystallite size in the nanoscale. Obtained SEM images of the powders indicate compact hydroxyapatite aggregates with the sizes of 5-30 microns when using calcium sucrate complexes  and loose particles in the range of 1-20 microns when using dextrin.

Author Biography

Andryi V. Lapinskyi, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute»

Кафедра технології неорганічних речовин, водоочищення та загальної хімічної технології, сташий викладач


Rahyussalim, A. J., Marsetio, A. F., Saleh, I., Kurniawati, T., Whulanza, Y. (2016). The Needs of Current Implant Technology in Orthopaedic Prosthesis Biomaterials Application to Reduce Prosthesis Failure Rate. Journal of Nanomaterials, 2016, 1–9.

Danilchenko, S.N. (2007). [Struktura i svoystva apatitov kaltsiya s tochki zreniya biomineralogii i biomaterialovedeniya (Obzor)]. Bulletin of the Sumy State University. Series Physics, Mathematics, Mechanics 2, 33–59. (In Russian).

White, T. J., ZhiLi, D. (2003). Structural derivation and crystal chemistry of apatites. Acta Crystallographica Section B Structural Science, 59(1), 1–16.

Boudemagh, D., Venturini, P., Fleutot, S., Cleymand, F. (2018). Elaboration of hydroxyapatite nanoparticles and chitosan/hydroxyapatite composites: a present status. Polymer Bulletin, 76(5), 2621–2653.

Ptáček, P. (2016). Introduction to Apatites. In P. Ptáček (Eds.), Apatites and Their Synthetic Analogues. Synthesis, Structure, Properties and Applications.

Wiglusz, R. J., Pozniak, B., Zawisza, K., Pazik, R. (2015). An up-converting HAP@β-TCP nanocomposite activated with Er3+/Yb3+ ion pairs for bio-related applications. RSC Advances, 5(35), 27610–27622.

Anwar, A., Kanwal, Q., Akbar, S., Munawar, A., Durrani, A., Hassan Farooq, M. (2017). Synthesis and characterization of pure and nanosized hydroxyapatite bioceramics. Nanotechnology Reviews, 6(2), 149–157.

Michał, W., Ewa, D., Tomasz, C. (2015). Lecithin-based wet chemical precipitation of hydroxyapatite nanoparticles. Colloid and Polymer Science, 293(5), 1561–1568.

Resmim, C. M., Dalpasquale, M., Vielmo, N. I., Mariani, F. Q., Villalba, J. C., Anaissi, F. J., Caetano, M. M., Tusi, M. M. (2018). Study of physico-chemical properties and in vitro antimicrobial activity of hydroxyapatites obtained from bone calcination. Progress in Biomaterials, 8(1), 1–9.

Cestari, A. (2016). Sol-gel methods for synthesis of aluminosilicates for dental applications. Journal of Dentistry, 55, 105–113.

Dontsova, T. A., Nahirniak, S. V., Astrelin, I. M. (2019). Metaloxide Nanomaterials and Nanocomposites of Ecological Purpose. Journal of Nanomaterials, 2019, 1–31.

Manafi, S. A., Khani, S., Soltanmoradi, A. (2010). Synthesis of peculiar structure of hydroxyapatite nanorods by hydrothermal condition for biomedical applications. Iranian Journal of Pharmaceutical Sciences Winter, 7(1), 37–42.

Suchanek, K., Bartkowiak, A., Perzanowski, M., Marszałek, M. (2018). From monetite plate to hydroxyapatite nanofibers by monoethanolamine assisted hydrothermal approach. Scientific Reports, 8(1), 15408.

Mochales, C., Briak-BenAbdeslam, H. E., Ginebra, M. P., Terol, A., Planell, J. A., Boudeville, P. (2004). Dry mechanochemical synthesis of hydroxyapatites from DCPD and CaO: influence of instrumental parameters on the reaction kinetics. Biomaterials, 25(7-8), 1151–1158.

Harilal, M., Saikiran, A., Rameshbabu, N. (2018). Experimental Investigation on Synthesis of Nanocrystalline Hydroxyapatite by the Mechanochemical Method. Key Engineering Materials, 775, 149–155.

Shu, C., Yanwei, W., Hong, L., Zhengzheng, P., Kangde, Y. (2005). Synthesis of carbonated hydroxyapatite nanofibers by mechanochemical methods. Ceramics International, 31(1), 135–138.

Petranovskaya, A. L., Turelik, M. P., Pilipchuk, E. V., Gorbik, P. P., Korduban, A. M., Ivasishyn, O. M. (2013) [Formirovanie biomimeticheskogo gidroksiapatita na poverhnosti titana]. Metallofizika i noveyshie tehnologii, 35, 1567–1584 (In Russian).

Rodríguez-Lugo, V., Karthik, T. V., Mendoza-Anaya, D., Rubio-Rosas, E., Villaseñor Cerón, L. S., Reyes-Valderrama, M. I., Salinas-Rodríguez, E. (2018). Wet chemical synthesis of nanocrystalline hydroxyapatite flakes: effect of pH and sintering temperature on structural and morphological properties. Royal Society Open Science, 5(8), 180962.

Safronova, T. V., Putlyaev, V. I., Sergeeva, A. I., Kunenkov, E. V., Tret’yakov, Y. D. (2009). Synthesis of nanocrystalline calcium hydroxyapatite from calcium saccharates and ammonium hydrogen phosphate. Doklady Chemistry, 426(2), 118–123.

Voitko, Z., Serhiienko, A., Dontsova, T., Nahirniak, S., Lapinskyi, A. (2020). Synthesis of HA–Collagen and HA–Collagen–Alginate Nanocomposites. Springer Proceedings in Physics, 709–718.

Dontsova, T. A., Nagirnyak, S. V., Zhorov, V. V., Yasiievych, Y. V. (2017). SnO2 Nanostructures: Effect of Processing Parameters on Their Structural and Functional Properties. Nanoscale Research Letters, 12(1), 332.

Abifarin, J. K., Obada, D. O., Dauda, E. T., Dodoo-Arhin, D. (2019). Experimental data on the characterization of hydroxyapatite synthesized from biowastes. Data in Brief, 26, 104485.

Ashwitha, A., Thamizharasan, K., Bhatt, P. (2020). Optimization of hydroxyapatite (HAp) extraction from scales of Sardinella longiceps and its conjugative effect with immunostimulants. SN Applied Sciences, 2(7), 1220.

Ratner, B. D., Hoffman, A., Schoen, F., Lemons, J. (2004). Biomaterials science an introduction to materials in medicine. Elsevier Academic Press.

Raynaud, S., Champion, E., Bernache-Assollant, D., Thomas, P. (2002). Calcium phosphate apatites with variable Ca/P atomic ratio I. Synthesis, characterisation and thermal stability of powders. Biomaterials, 23(4), 1065–1072.






Physical and inorganic chemistry