METHODS OF SYNTHESIS OF HYDROXYANTHRAQUINONE DERIVATIVES AND THEIR BIOLOGICAL ACTIVITY
DOI:
https://doi.org/10.15421/jchemtech.v29i2.225941Keywords:
1(2)-гідроксиантрахінон; фталевий ангідрид; реакція Дільса-Альдера; реакція Фріделя-Крафтса; діазотування; протипухлинна активність; токсичністьAbstract
Hydroxyanthraquinones are active components of many traditional medicinal plants, including Cassia acutifolia, Rhamnus frangula, Rheum rhabarbarum, Aloe vera. For the first time, the methods of obtaining synthetic derivatives of hydroxyanthraquinone are generalized and the spectrum of their biological activity and toxic effect on the human body is described. Some hydroxyanthraquinone derivatives have shown potential in the treatment of acute pathological conditions. The review is devoted to the synthesis of hydroxyanthraquinone derivatives obtained by reactions of Friedel-Crafts, Diels-Alder, nucleophilic substitution, diazotization, cycloaddition according to the publications of the SciFinder and Reaxys databases for the last 20 years. The first methods of industrial production of hydroxyanthraquinone were the catalytic oxidation of anthracene obtained from coal tar. Derivatives of phthalic anhydride and phenol were most often used as starting materials for obtaining hydroxy groups in the anthraquinone ring. Hydroxy derivatives of the anthraquinone series were obtained as by-products in the reactions of Zandmeyer, Ullmann, Meyerwein and others described in the review.
References
Gessler, N.N.; Egorova, A.S.; Belozerskaya, T.A. (2013). Fungal anthraquinones. Appl Biochem Microbiol. 49(2), 85–99. https://doi.org/10.1134/S000368381302004X
Pankewitz, F.; Zoёllmer, A.; Graёser, Y.; Hilker, M. (2007). Anthraquinones as defensive compounds in eggs ofGalerucini leaf beetles: Biosynthesis by the beetles? Arch Insect Biochem Physiol. 66(2), 98–108. https://doi.org/10.1002/arch.20215
Malik, E.; Muller, C. (2016). Anthraquinones As Pharmacological Tools and Drugs. Medicinal research reviews. 36(4), 705-748. https://doi.org/10.1002/med.21391
Alaadin, A.M.; Al-Khateeb, E.H.; J¨ager, A.K. (2007). Antibacterial activity of the Iraqi Rheum ribes. Root. Pharm. Biol. 45(9), 688–690. https://doi.org/10.1080/13880200701575049
Huang, Q.; Lu, G.; Shen, H.M.; Chung, M.; Ong, C.N. (2007). Anti-cancer properties of anthraquinones from rhubarb. Med. Res. Rev. 27(5), 609–630. https://doi.org/10.1002/med.20094
Marzouk, B.; Marzouk, Z.; D´ecor, R.; (2009). Antibacterial and anticandidal screening of Tunisian Citrullus colocynthis Schrad. from Medenine. J. Ethnopharmacol. 125(2), 344–349. https://doi.org/10.1016/j.jep.2009.04.025
Osman, C.P.; Ismail, N.H.; Ahmad, R.; Ahmat, N.; Awang, K.; Jaafar, F.M. (2010). Anthraquinones with antiplasmodial activity from the roots of Rennellia elliptica Korth. (Rubiaceae). Molecules. 15(10), 7218–7226. https://doi.org/10.3390/molecules15107218
Achmad, F.H.; Aty, W.; Arannya, P.D.; Nike, F.; Lidya, T.; Indah, S.T. (2014). In vitro antimalarial activity screening of several Indonesian plants using HRP2 assay. Int. J. Pharm. Pharm. Sci. 6, 125–128.
Kingwell, E.; Koch, M.; Leung, B.; Isserow, S.; Geddes, J.; Rieckmann, P.; Tremlett, H. (2010). Cardiotoxicity and other adverse events associated with mitoxantrone treatment for MS. Neurology. 74(22), 1822–1826. DOI: https://doi.org/10.1212/WNL.0b013e3181e0f7e6
Hussain, H.; Al-Harrasi, A.; Al-Rawahi, A.; Green, I.; Csuk, R.; Ahmed, I.; Shan, A.; Abbas, G.; Rehman, N.; Ullah, R. (2015). A fruitful decade from 2005 to 2014 for anthraquinone patents. Expert Opin. Ther. Patents. 1053-1064. https://doi.org/10.1517/13543776.2015.1050793
Khanal, P.; Patil, B. M.; Chand, J.; Naaz, Y. (2020). Anthraquinone Derivatives as an Immune Booster and their Therapeutic Option Against COVID-19. Natural Products and Bioprospecting. 10, 325-335. https://doi.org/10.21203/rs.3.rs-39093/v1
Boisvert, L.; Brassard, P. (1988). Regiospecific addition of monooxygenated dienes to halo quinines. J. Org. Chem. 53, 4052-4059. https://doi.org/10.1021/jo00252a031
Godleski, S.; Valpey, R. (1982). Novel oxidative transformation: regiospecific preparation of naturally occurring 1-hydroxyanthraquinones. J. Org. Chem. 47, 383-384. https://doi.org/10.1021/jo00341a049
Zembower, D.; Kam, C.-M.; Powers, J.; Zalkow, L. (1992). Novel anthraquinone inhibitors of Human Leukocyte Elastase and Cathepsin G1. J. Med. Chem. 35, 1597-1605. https://doi.org/10.1021/jm00087a014
Komiyama, T.; Takaguchi, Y.; Tsuboi, S. (2006). Synthesis of anthraquinone derivatives: tandem Diels–Alder-Decarboxylation–Oxidation reaction of 3-hydroxy-2-pyrone with 1,4-naphthoquinone. SYNLETT. 1, 124–126. DOI: 10.1055/s-2005-922769
Dhananjeyan, M.R.; Milev, Y.P.; Kron, M.A.; Nair, M.G. (2005). Synthesis and activity of substituted anthraquinones against a human filarial parasite, Brugia malayi. J. Med. Chem. 48, 2822−2830. https://doi.org/10.1021/jm0492655
Ye, M.-Y; Yao, G.-Y.; Pan, Y.-M.; Liao, Z.-X.; Zhang, Y.; Wang, H.-S. (2014). Synthesis and antitumor activities of novel a-aminophosphonate derivatives containing an alizarin moiety. European Journal of Medicinal Chemistry. 83, 116-128. https://doi.org/10.1016/j.ejmech.2014.02.067
Zhang, Z.; Li, X.; Song, T.; Zhao, Y.; Feng, Y. (2012). An anthraquinone scaffold for putative, Two-Face Bim BH3 α‑Helix Mimic. J. Med. Chem. 53(23), 10735−10741.
Gupta, R.; Thakuri, G.; Bajracharya, G.; Jha, R. N. (2021). Synthesis of antioxidative anthraquinones as potential anticancer agents. BIBECHANA. 18(2), 143-153. https://doi.org/10.3126/bibechana.v18i2.31234
Shupeniuk, V.; Taras, T.; Sabadakh, O.; Luchkevich, E.; Matkivsky, N. (2020). Synthesis of nitrogen-containing heterocyclic compounds based on 9,10-anthraquinone derivatives. Journal of Chemistry and Technologies. 28(2), 122-132. DOI: https://doi.org/10.15421/082013
Sabadakh, O.P.; Taras, T.M.; Luchkevich, E.R.; Novikov, V.P. (2015). Synthesis of triazene derivatives of 9, 10-anthraquinone. Russ. J. Org. Chem. 51(2), 277-278. https://doi.org/10.1134/S1070428015020244
Shupeniuk, V.I.; Amaladoss, N.; Taras, T.N.; Sabadakh, O.P.; Matkivskyi, N.P. (2021). Synthesis and In Silico Study of 4-Substituted 1-Aminoanthraquinones. Russ. J. Org. Chem. 57, 582-588. https://doi.org/10.1134/S1070428021040126
Blankespoor, R.; Smart, R.; Batts, E.; Kiste, A.; Lew, R.; Vliet, M. (1995). Photochemistry of l-alkoxy- and l-(benzyloxy)-9,10-anthraquinones in methanol: A facile process for the preparation of aldehydes and ketones. J. Org. Chem. 60, 6852-6859.
Yoshida, K.; Hikasa, M.; Ishii. K.; Kadota, H.; Yamashita, Y. (1986). Salective photoalkylamination and photohydroxylation of aminoanthraquinones and their N-acylated derivatives. J. Chem. Soc., Chem. Commun. 10, 758-759. https://doi.org/10.1039/C39860000758
Tkachenko, T.B. The reactions of aminoanthraquinones of anthraquinonyl diazonium salts, accompanied by a complication of the carbon skeleton. Abstract of the dissertation for the degree of candidate of chemical sciences: specialty 02.00.03 “Organic chemistry”. Kemerovo State University, Tomsk, 2005.
Denisov, V.; Tkachenko, T. (2005). Investigation of the reactions of anthraquinonyl diazonium salts. Izvestiya Vysshikh Uchebnykh Zavedenii, Seriya “Khimiya I Khimicheskaya Tekhnologiya”. 48, 99.
Taras, T. M.; Dejchakivsky, Y. I.; Shupeniuk, V. I.; Sabadakh, O. P.; Bolibrukh, L. D. (2019). Features of obtaining triazens of the anthraquinone series. Chem., Technol. and Application of Substances. 2(1), 92. https://doi.org/10.23939/ctas2019.01.092
Inoue, H.; Hida, M.; Tuong, T.D.; Murata, T. (1973). The Nucleophilic Photo-substitution reaction of anthraquinone derivatives. I. The Photo-amination of sodium 1-amino-4-bromanthraquinone-2-sulfate. J. Chem. Soc., of Japan, 46, 1759 - 1762. https://doi.org/10.1246/bcsj.46.1759
Smart, R.; Peelen, T.; Blankespoor, R.; Ward, D. (1997). Short-Lived 1,5-biradicals formed from triplet 1-alkoxy- and 1-(benzyloxy)-9,10-anthraquinones. J. Am. Chem. Soc. 119, 461-465. https://doi.org/10.1021/ja962633c
Blankespoor, R.; De Jong, R.; Dykstra, R.; Hamstra, D.; Rozema, D.; Van Meurs, D.; Vink, P. (1991). Photochemistry of 1-alkoxy- and 1-(benzyloxy)-9,l0-anthraquinones in methanol: A hydrogen atom abstraction process that exhibits a captodative effect. J. Am. Chem. Soc. 113, 3507-3513. https://doi.org/10.1021/ja00009a042
Kappe, C.O.; Dallinger, D. (2009). Controlled microwave heating in modern organic highlights from the 2004-2008. Mol. Divers. 13, 171–193. https://doi.org/10.1007/s11030-009-9138-8
Patricci, E.; Mann, A.; Schoenfelder, A. (2006). Microwaves Make Hydroformylation a Rapid and Easy Process. Org. Lett. 8(17), 3725-3727. https://doi.org/10.1021/ol061312v
Baqi, Y.; Muller, C.E. (2010). Synthesis of alkyl- and aryl-amino-substituted anthraquinone derivatives by microwave-assisted copper (0)-catalyzed Ullmann coupling reactions. Nature Protocol. 5(5), 387-390. doi:10.1038/nprot.2010.63
Patel, K.; Gadewar, M.; Tahilyani, V.; Patel, D.K. (2012). Barbaloin: A concise report of its pharmacological and analytical aspects. Asian Pac J Trop Biomed. 2(10), 835–838. DOI 10.1007/s13659-012-0014-3
Kumar, G.D.; Siva, B.; Vadlamudi, S.; Bathula, S.R.; Duttad, H.; Babu, K.S. (2021). Design, synthesis, and biological evaluation of pyrazole-linked aloe emodin derivatives as potential anticancer agents. Advance Article. DOI: 10.1039/D0MD00315H
Wang, C.; Zhang, D.; Ma, H.; Liu, J. (2007). Neuroprotective effects of emodin-8-O-beta-D-glucoside in vivo and in vitro. Eur J Pharmacol. 577, 58–63. https://doi.org/10.1016/j.ejphar.2007.08.033
Yu, C.; Qi, D.; Sun, J-F.; Li, P.; Fan, H-Y. (2015). Rhein prevents endotoxin-induced acute kidney injury by inhibiting NF-κB activities. Sci Rep. 5, 11822.
Wald, A. (2003). Is chronic use of stimulant laxatives harmful to the colon?. J Clin Gastroenterol. 36(5), 386–389.
Kushi, L.H.; Doyle, C.; McCullough, M.; Rock, C.L.; Demark-Wahnefried, W.; Bandera, E.V.; Gapstur, S.; Patel, A.V.; Andrews, K.; Gansler, T. (2012). American Cancer Society guidelines on nutrition and physical activity for cancer prevention. CA Cancer J. Clin. 62(1), 30–67. doi:10.3322/caac.20140
Helleday, T.; Petermann, E.; Lundin, C.; Hodgson, B.; Sharma, R.A. (2008). DNA repair pathways as targets for cancer therapy. Nat. Rev. Cancer. 8(3), 193-204. DOI:10.1038/nrc2342
Xing, J-y.; Song, G-p.; Deng, J-p.; Jiang, L.-z.; Xiong, P., Yang, B.-j.; Liu S.-s. (2015). Antitumor effects and mechanism of novel emodin rhamnoside derivatives against human cancer cells in vitro. PLoS ONE. 10(12), e0144781. https://doi.org/10.1371/journal.pone.0144781
Han, Y-M.; Lee, S-K.; Jeong, D.G.; Ryu, S.E.; Han, D.C.; Kim, D.K.; Kwon B-M. (2012). Emodin inhibits migration and invasion of DLD-1 (PRL-3) cells via inhibition of PRL-3 phosphatase activity. Bioorg. Med. Chem. Lett. 22(1), 323–326. https://doi.org/10.1016/j.bmcl.2011.11.008
Greco, G.; Turrini, E.; Catanzaro, E.; Fimognari C. (2021). Marine Anthraquinones: Pharmacological and Toxicological Issues. Marine drugs. 19(5), 272. DOI: 10.3390/md19050272
Siddamurthi, S.; Gutti, G.; Jana, S.; Kumar, A.; Singh, S.K. (2020). Anthraquinone: a promising scaffold for the discovery and development of therapeutic agents in cancer therapy. Future medicinal chemistry. 12(11), 1037-1069. DOI: 10.4155/fmc-2019-0198
Tan, Q.-W.; Ouyang, M.-A.; Shen, S.; Li, W. (2012). Bioactive Metabolites from a Marine-Derived Strain of the Fungus Neosartorya Fischeri. Nat. Prod. Res. 26, 1402–1407. doi:10.3390/md13031569
Jelassi, B.; Anchelin, M.; Chamouton, J.; Cayuela, M.L.; Clarysse, L.; Li, J.; Goreґ, J.; Jiang, L-H.; Roger, S. (2013). Anthraquinone emodin inhibits human cancer cell invasiveness by antagonizing P2x7 receptors. Carcinogenesis. 34(7), 1487–1496. https://doi.org/10.1093/carcin/bgt099
Ma, Y.S.; Weng, S.W.; Lin, M.W.; Lu, C.C.; Chiang, J.H.; Yang, J.S.; Lai, K.C.; Lin, J.P.; Tang, N.Y.; Lin, J.G.; Chung, J.G. (2012). Antitumor effects of emodin on LS1034 human colon cancer cells in vitro and in vivo: Roles of apoptotic cell death and LS1034 tumor xenografts model. Food Chem Toxicol. 50(5), 1271–1278. https://doi.org/10.1016/j.fct.2012.01.033
Lin, S.Z.; Wei, W.T.; Chen, H.; Chen, K.J.; Tong, H.F.; Wang, Z.H.; Ni, Z.L.; Liu, H.B.; Guo, H.C.; Liu, D.L. (2012). Antitumor activity of emodin against pancreatic cancer depends on its dual role: Promotion of apoptosis and suppression of angiogenesis. PLoS One. 7(8), 1–15. https://doi.org/10.1371/journal.pone.0042146
Pecere, T.; Gazzola, M.V.; Mucignat, C.; Tumors, N.; Parolin, C.; Vecchia, F.D.; Cavaggioni, A.; Basso, G.; Diaspro, A.; Salvato, B.; Carli, M.; Palu, G. (2000). Aloe-emodin is a new type of anticancer agent with selective activity against neuroectodermal tumors advances in brief aloe-emodin is a new type of anticancer agent with selective activity against neuroectodermal tumors. Cancer Res. 60, 2800–2804.
Kuo, P-L.; Lin, T-C.; Lin, C-C. (2002). The antiproliferative activity of aloe-emodin is through p53-dependent and p21-dependent apoptotic pathway in human hepatoma cell lines. Life Sci. 71(16), 1879–1892. https://doi.org/10.1016/S0024-3205(02)01900-8
Guo, J.; Xiao, B.; Liu, Q.; Zhang, S.; Liu, D.; Gong, Z. (2007). Anticancer effect of aloe-emodin on cervical cancer cells involves G2/M arrest and induction of differentiation. Acta Pharmacol Sin. 28(12), 1991–1995. doi: 10.1111/j.1745-7254.2007.00707.x
Chiu, T.H.; Lai, W.W.; Hsia, T.C.; Yang, J.S.; Lai, T.Y.; Wu, P.P.; Ma, C.Y.; Yeh, C.C.; Ho, C.C.; Lu, H.F.; Wood, W.G.; Chung, J.G. (2009). Aloe-emodin induces cell death through S-phase arrest and caspase-dependent pathways in human tongue squamous cancer SCC-4 cells. Anticancer Res. 29(11), 4503–4511.
Bottenberg, M.M.; Wall, G.C.; Harvey, R.L.; Habib, S. (2007). Oral aloe vera-induced hepatitis. Ann Pharma-cother. 41(10), 1740–1743. https://doi.org/10.1345/aph.1K132
World Health Organization International Agency for Research on Cancer. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Some Traditional Herbal Medicines, Some Mycotoxins, Naphthalene, and Styrene. 2002. p. 129–151.
National Toxicology Program. TR-493. Toxicology and carcinogenesis studies of emodin (CASNO. 518-82-1) feed studies in F344/N rats and B6C3F1 mice. Natl Toxicol Program Tech Rep Ser. 2001. 493, 1–278.
Downloads
Published
Issue
Section
License
Copyright (c) 2021 Дніпровський національний університет імені Олеся Гончара
This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors reserve the right of attribution for the submitted manuscript, while transferring to the Journal the right to publish the article under the Creative Commons Attribution License. This license allows free distribution of the published work under the condition of proper attribution of the original authors and the initial publication source (i.e. the Journal)
- Authors have the right to enter into separate agreements for additional non-exclusive distribution of the work in the form it was published in the Journal (such as publishing the article on the institutional website or as a part of a monograph), provided the original publication in this Journal is properly referenced
- The Journal allows and encourages online publication of the manuscripts (such as on personal web pages), even when such a manuscript is still under editorial consideration, since it allows for a productive scientific discussion and better citation dynamics (see The Effect of Open Access).