ADSORPTION OF CO, NI, CU, ZN METAL IONS ON FULLERENE C60 AND ON SINGLE-WALL CARBON NANOTUBES C48 AS A DRIVEN FORCE OF COMPOSITE COATINGS’ ELECTRODEPOSITION

Authors

  • Valentina V. Tytarenko Dnipro National University of Railway Transport named after Academician V. Lazaryan, Lazaryana St, 2,Dnipro, 49010, Ukraine
  • Eduard Ph. Shtapenko Dnipro National University of Railway Transport named after Academician V. Lazaryan, Lazaryana St, 2,Dnipro, 49010, Ukraine
  • Eugene O. Voronkov Dnipro National University of Railway Transport named after Academician V. Lazaryan, Lazaryana St, 2,Dnipro, 49010, Ukraine
  • Aruna Vangara Rust College, 150 Rust Ave, Holly Springs, MS, 38635, USA
  • Vladimir A. Zabludovsky Dnipro National University of Railway Transport named after Academician V. Lazaryan, Lazaryana St, 2,Dnipro, 49010, Ukraine
  • Wojciech Kolodziejczyk Jackson State University, 1400 J. R. Lynch St, Jackson, MS, 39217, USA
  • Karina Kapusta Jackson State University, 1400 J. R. Lynch St, Jackson, MS, 39217, USA
  • Sergiy I. Okovytyy Dnipro National University, Haharina Ave, 72, Dnipro, 49000, Ukraine

DOI:

https://doi.org/10.15421/082108

Keywords:

Electrodeposition, Composite materials, Transition metals, Carbon nanoparticles, DFT

Abstract

Composite electrodeposited films fabricated from aqueous solution of electrolytes that contain ions of metals along with carbon nanomaterial particles such as fullerene C60 were investigated. Results for the cathodic polarization curve showed an increase in charge-transfer resistance. Phase composition analysis for metal films revealed the presence of carbon nanoparticles (CNPs) inside the metal matrix and significant changes in the crystal lattice. As it shown on microphotographies, addition of CNPs changes columnar growth patterns of metallic films to microlayered structure due to passivation of the surface. We assume that CNPs obtain charge in solution by adsorbing metal ions on its surface.

In order to prove this hypothesis Density Functional Theory was used for calculation of thermochemical, electronic and structural properties of metal ions complexes with CNPs. Calculated binding energies of the CNP-Me2+ complexes suggests that an adsorption of Co2+, Ni2+, Cu2+, and Zn2+ ions on the surface of fullerene C60 and SWNT C48 is possible and thermodynamically favorable. Binding affinity was found to be significantly stronger when the metal ion was adsorbed onto a surface of SWNT C48, than adsorption to the fullerene C60. With Cu2+ complexes being the most thermodynamically stable, binding affinities were increasing in a row Co2+<Zn2+<Ni2+<Cu2+. Calculated free binding energies showed a good correlation with the band gap, distances between metal ion and a surface of CNP, dipole moments, delocalization of natural bond orbital (NBO) charges, and second ionization potential of metal ions. High values of calculated binding energies between metal ions and CNPs supported the hypotheses proposed here.

References

He, X. Y. Wang, X., Sun, L. (2012). Huang Preparation and Investigation of Ni-Diamond Composite Coatings by Electrodeposition. Nanosci Nanotechnol Lett., 4, 48–52.

Burkat, G.K., Fujimura, T., Dolmatov, V.Y., Orlova, E.A. (2005). Preparation of composite electrochemical nickel–diamond and iron–diamond coatings in the presence of detonation synthesis nanodiamonds. Diam Relat Mater, 14(11), 1761–1764.

Isakov, V.P., Lyamkin, A.I., Nikitin, D.N., Shalimova, A.S., Solntsev, A.V. (2010). Structure and properties of chromium-nanodiamond composite electrochemical. Prot Met Phys Chem Surfaces, 46, 78–581.

Wang, L., Gao, Y., Xue, Q., Qunji, X. (2005). HuiwenEffects of nano-diamond particles on the structure and tribological property of Ni-matrix nanocomposite coatings. Mater Sci Eng. A 390(1-2), 313–318.

Zabludovsky, V.A. Dudkina, V.V., Shtapenko E.F. (2013). The investigation of influence of laser radiation on the structure and mechanical properties of composite electrolytic nickel coating. Science and Transport Progress Bulletin of Dnipropetrovsk National University of Railway Transport, 5(47), 70–78.

Dudkina, V.V., Zabludovsky, V.A. Shtapenko E.F. (2015). V. The structure and properties of electrolytic nickel composite coatings fabricated by pulse current. Metallofiz I Noveishie Tekhnologii, 37(5), 713–72.

Tytarenko, V.V. Zabludovs’kyy, V.A. (2016). The effect of superdispersed diamond particles on the structure and properties of electrolytic nickel coatings. Metallofiz I Noveishie Tekhnologii, 38(4), 519–529.

Tytarenko, V.V., Zabludovsky, V.A., Shtapenko, E.Р., Tytarenko, I.V. (2019). Application of pulse current for producing a strengthening composite nickel coating. Galvanotechnik, 110(4), 648–65.

Wanniarachchi, A.S., Marto, P.J., Rose, J.W. (1986). Film condensation of steam on horizontal finned tubes: effect of fin spacing. J. Heat Transfer, 108(4), 960–966.

Kim, S. J., Hее, C. N. (2000). Turbulent film condensation of high pressure steam in a vertical tube. Int. J. Heat and Mass Transfer, 43, 21(1), 4031–4042.

Chiganova, G. A., Mordvinova, L. E. (2011). Effect of Nanodiamond Modification on the Characteristics of Diamond-Containing Nickel Coatings. Inorg Mater, 47, 717–721.

Matsubara, H., Abe, Y., Chiba, Y., Hiroshi, N., Nobuo, S., Kazunori, H., Yasunobu, I. (2007). Co-deposition mechanism of nanodiamond with electrolessly plated nickel films. Electrochim Acta, 52, 9(15), 3047–3052.

Gheorghies, C. D., Rusu, E., Ispas, A., Bund, A., Carac, G., Condurache-Bota, S., Georgescu, L. P. (2014). Erratum to: Synthesis and characterization of nickel–diamond nanocomposite layers. Applied Nanoscience, (4), 1021-1033.

Hou, J. G., Li, X., Wang, H., Wang. B. (2000). Jpcs61, 995, Pdf. 61, 995–998.

Sobhi, C. A., Khorief, N. A., Djerourou, A., Gutiérrez, M. R., Domingo, L. R. (2016). DFT study of the mechanism and selectivities of the [3+ 2] cycloaddition reaction between 3‐(benzylideneamino) oxindole and trans‐β‐nitrostyrene. J. Physical Organic Chemystri, 30:e3637.

Parr, R.G. Yang, W. (1989). Density-Functional Theory of Atoms and Molecules. Density Funct. Theory Atoms Mol. Horizons of Quantum Chemistry, 5–15.

Koch, W., Holthausen, M. C. (2001). Chemists Guide to Density Functional Theory. Wiley, VCH: New York.

Arbuznikov A. V. (2007). Hybrid exchange correlation functionals and potentials: Concept elaboration. J. Struct. Chem., 48(1), 31.

Becke, A. D. (2014). Perspective: Fifty years of density-functional theory in chemical physics. J. Chem. Phys., 140.

Schreckenbach, G. Hay, P. J., Martin, R. L. (2002). Theoretical Study of Stable Trans and Cis Isomers in [UO2(OH)4]2- Using Relativistic Density Functional Theory. Inorg. Chem., 37, 4442–4451.

Schreckenbach, G., Hay, P. J., Martin, R. L. (1999). Density functional calculations on actinide compounds: Survey of recent progress and application to [UO2X4]2? (X=F, Cl, OH) and AnF6 (An=U, Np, Pu). J. Comput. Chem., 20, 70–90.

Becke, A. D. (1993). Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys., 98, 5648–5652.

Kohn, W., Becke, A. D., Parr, R. G. (1996). Density functional theory of electronic structure. J. Phys. Chem., 100, 12974–12980.

Belenkov, E. A., Shakhova, I. V. (2011). Structure of carbinoid nanotubes and carbinofullerenes. Phys. Solid. State, 53, 2385–2392.

Valencia, H., Gil, A., Frapper, G. (2010). Trends in the adsorption of 3d transition metal atoms onto graphene and nanotube surfaces: A DFT study and molecular orbital analysis. J. Phys. Chem., 114, 14141–14153.

Skyner, R. E., McDonagh, J. L., Groom, C. R., van Mourika, T., Mitchell, J. B. O. (2015). A review of methods for the calculation of solution free energies and the modelling of systems in solution. Phys. Chem. Chem. Phys., 17, 6174–6191.

Grimme, S., Antony, J., Ehrlich, S., Krieg, H. (2010). A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys., 132, 154104.

Grimme S., Ehrlich, S., Goerigk, L. (2011). Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem., 32, 1456–1465.

Frisch M. J. / M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R . Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. J. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J.M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox. –Gaussian 09, Revision D.01, 2016.

Bravais, A. Études cristallographiques par M. Auguste Bravais. Paris, Gauthier-Villars, 1866.

Shtapenko, E. P., Zabludovsky, V.O., Tytarenko, V.V., Kraeva, V.S., Afanasov, А.М. (2019). Formation of Layered Structure in Films of Nickel at Electrodeposition by a Pulse Current. Metallofizika i Noveishie Tekhnologii, 41(1), 27–37.

Downloads

Published

2021-04-30