COPPER-CARBON NANOCOMPOSITES BASED ON SYNTHETIC HUMIC SUBSTANCES

Authors

  • Valentina A. Litvin Черкасский национальный университет имени Богдана Хмельницкого, Ukraine https://orcid.org/0000-0003-1236-6344
  • Roger Abi Njoh Near East University, Cyprus

DOI:

https://doi.org/10.15421/082113

Keywords:

nano-structures; сopper-carbon nanocomposites; synthetic humic substances

Abstract

A new method for the synthesis of a copper-carbon nanocomposite using synthetic humic substances as a carbon source is presented. The method is based on the pyrolysis of copper (II) humate in reducing (Н2) and in inert atmosphere (Ar). The structure and properties of the Cu/C nanocomposites were characterized by X-ray diffraction (XRD), FT-IR spectroscopy, transmission electron microscopy (TEM), elemental analysis. The porous structure of Cu/C nanocomposite investigated using the nitrogen volumetric adsorption. Under the conditions of synthesis, a carbon matrix with a very low degree of ordering is formed. It was found that the dimensional and structural characteristics of copper nanoparticles depend on the synthesis conditions and vary from 40 to 80 nm. Carrying out the synthesis in a reducing atmosphere makes it possible to obtain copper-carbon nanocomposites that do not contain copper(I) oxide or copper(II) oxide phases. It was found that an increase in the pyrolysis temperature contributes to the improvement of the structure of the crystal lattice of the metal phase, an increase in the degree of carbonization of the organic component, and a change in the textural characteristics from mesoporous to microporous.

References

Zaporotskova, I. A., Kozhitov, L. V., Anikeev, N. A., Davletova, O. A., Popkova, A. V., Muratov, D. G., Yakushko, E. V. (2015). Metal–carbon nanocomposites based on pyrolysed polyacrylonitrile. Mod. Electron. Mater., 1 (2), 43-49.

https://doi.org/10.1016/j.moem.2015.11.004

Kryazhev, Yu. G., Zapevalova, E. S., Semenova, O. N., Trenikhin, M. V., Solodovnichenko, V. S., Likholobov, B. A. (2017). Synthesis of metal–carbon nanocomposites containing nanoparticles of transition metals encapsulated in a graphite-like shell. Protection of Metals and Physical Chemistry of Surfaces, 53, 268–271.

https://doi.org/10.1134/S2070205117020150

Kozhitov, L.V., Muratov, D.G., Emelyanov, S.G., Kostishin, V.G., Yakushko, E.V., Savchenko, A.G., Schetinin, I.V., Mosyakina, E.P. (2014). The Structureand Magnetic Properties Metal-carbon Nanocomposites NiCo/C on Based of Polyacrylonitrile. J. Nano- Electron. Phys., 6 (3), 03040.

Fan R., Chen, C., Han, M., Gong, W., Zhang, H., Zhang, Y., Zhao, H., Wang, G. (2018) Highly Dispersed Copper Nanoparticles Supported on Activated Carbon as an Efficient Catalyst for Selective Reduction of Vanillin. Small, 14(36), 1801953.

https://doi.org/10.1002/smll.201801953

Gawande, M.B., Goswami, A., Felpin F.X. (2016). Cu and Cu-based nanoparticles: synthesis and applications in catalysis. Chem. Rev., 116, 3722–3811.

https://doi.org/10.1021/acs.chemrev.5b00482

Moeinzadeh, S., Jabbari, E. (2017). Nanoparticles and their applications Springer, Berlin, 2017, P. 335–361.

https://doi.org/10.1007-/978-3-662-54357-3_11

Ghoto, S. A., Khuhawar, M. Y., Jahangir, T. M., Mangi, J. D. (2019) Applications of copper nanoparticles for colorimetric detection of dithiocarbamate pesticides. J. Nanostruc. Chem., 9, 77–93.

https://doi.org/10.1007/s40097-019-0299-4

Tabassum, H., Mahmood, A., Zhu, B., Liang, Z., Zhong, R., Guo, S., Zou, R. (2019). Recent advances in confining metal-based nanoparticles into carbon nanotubes for electrochemical energy conversion and storage devices. Energy Environ. Sci., 1-98.

https://doi.org/10.1039/C9EE00315K

Bocarando-Chacón, J., Vargas-Vazquez, D., Martinez-Suarez, F., Flores-Juárez, C., Cortez-Valadez, M. (2020) Surface-enhanced Raman scattering and antibacterial properties from copper nanoparticles obtained by green chemistry. Applied Physics A. 126, 530.

https://doi.org/10.1007/s00339-020-03704-1

Shad, A.A. (2019) Review of green synthesis and antimicrobial efficacy of copper and nickel nanoparticles. Am. J. Biomed. Sci. Res., 3(6), 472–475.

34297/AJBSR.2019.03.000721

Singh, A, Ram Prabhu, T, Sanjay, AR, Koti V. (2017). An overview of processing and properties of Cu/CNT nano composites. Mater. Today Proc., 4, 3872-3881.

https://doi.org/10.1016/j.matpr.2017.02.286

Li, J., Liu, C. (2009) Carbon-coated copper nanoparticles: synthesis, characterizationand optical properties. New J. Chem., 33, 1474–1477.

https://doi.org/10.1039/B906796E

Huang, Z., Yao, Y., Pang, Z., Yuan, Y., Li, T., He, K., Hu, X., Cheng, J., Yao, W., Liu, Y., Nie, A., Sharifi-As, S., Cheng, M., Song, B., Amine, K., Lu, J., Li, T., Hu, L., Shahbazian-Yassar R. (2020) Direct observation of the formation andstabilization of metallic nanoparticles on carbonsupports. Nat. commun., 11 (6), 6373.

https://doi.org/10.1038/s41467-020-20084-5

Sehaqui, H., Brahmi, Y., Ju, W. (2020) Facile and universal method for the synthesis of metal nanoparticles supported onto carbon foams. Cellulose, 27, 263–271.

https://doi.org/10.1007/s10570-019-02805-2

Seo, J. Y., Kang, H. W., Jung, D. S., Lee, H. M., BinPark, S. (2013) One-step synthesis of copper nanoparticles embedded in carbon composites. Mater. Res. Bull., 48 (4), 1484-1489.

https://doi.org/10.1016/j.materresbull.2012.12.070

Litvin, V.A., Abi Njoh, R. (2020) Synthetic fulvic acids from tannin. Journal of Chemistry and Technologies, 28(3), 251-259.

https://doi.org/10.15421/082027

Gregg, S.G., Sing, K.S.W. (1982) Adsorption, surface area and porosity, 2nd Edition edn. Academic press, London, 1982.

Horvath, G., Kawazoe, K. (1983) Method for calculation of effective pore size distribution in molecular sieve carbon. J. Chem. Eng. Jpn., 16, 470–475.

https://doi.org/10.1252/jcej.16.470

Yang, T., Hodson, M. E. (2018) The copper complexation ability of a synthetic humic-like acid formed by an abiotic humification process and the effect of experimental factors on its copper complexation ability. Environ. Sci. Pollut. Res., 25, 15873–15884.

https://doi.org/10.1007/s11356-018-1836-2

Gomes de Melo, B. A., Motta, F. L., Santana, M. H. (2016) Humic acids: Structural properties and multiple functionalities for novel technological developments. Mater Sci Eng C., 62, 967–974.

https://doi.org/10.1016/j.msec.2015.12.001

Litvin, V.A., Minaev, B.F., Baryshnikov, G.V. (2015) Synthesis and properties of synthetic fulvic acid derived from hematoxylin. J. Mol. Struct., 1086, 25–33.

https://doi.org/10.1016/j.molstruc.2014.12.091

Machadoa W., Franchini J. C., de Fátima Guimarães M., Filho J.T. (2020) Spectroscopic characterization of humic and fulvic acids in soil aggregates. Brazil. Heliyon, 6(6), 04078.

https://doi.org/10.1016/j.heliyon.2020.e04078

Theivasanthi, T., Alagar, M. (2010) X-Ray Diffraction Studies of Copper Nanopowder. Arch. Phys. Res., 1 (2), 112-117.

Afolabi, A. S., Abdulkareem, A. S., Iyuke, S. E. (2007) Synthesis of carbon nanotubes and nanoballsby swirled floating catalyst chemicalvapour deposition method. J. Exp. Nanosci., 2 (4), 269–277.

https://doi.org/10.1080/17458080701745658

Downloads

Published

2021-04-27

Issue

Section

Physical and inorganic chemistry