DETERMINATION OF FATTY-ACID COMPOSITION OF NUT MEAL BY CHROMATOGRAPHY

Authors

  • Anna V. Novik Oles Honchar Dnipro National University, Ukraine
  • Olena G. Shidakova-Kamenyuka Kharkiv State University of Nutrition and Trade, Ukraine
  • Olena O. Chernushenko Oles Honchar Dnipro National University, Ukraine
  • Kateryna V. Dil Oles Honchar Dnipro National University, Ukraine

DOI:

https://doi.org/10.15421/jchemtech.v29i4.228829

Keywords:

pine nut meal, walnut meal, fatty acids, chromatography

Abstract

The method of chromatography determined the quantitative and qualitative composition of carboxylic acids in meal of cedar (CNM) and walnuts (WNM). It was found that CNM and WNM contain a total of 36 carboxylic acids. WNM also contains more dicarboxylic and polybasic carboxylic acids, and CNM is 2.4 times higher than WNM in terms of aromatic acids and their derivatives. The nutritional value of nut meal fats was assessed. It was found that WNM fats have a higher degree of unsaturation compared to CNM - the total content of MUFA and PUFA in walnut meal is 95.79% of the total fat, and in pine nut meal - 80.19%. According to the number of PUFAs, the fats of CNM and WNM almost do not differ - their content is 53.16 and 54.82%, respectively. It is noted that PUFAs of pine nut meal are represented mainly by linolenic acid (94.6% of all PUFAs), and PUFAs of walnut meal - linoleic (57.3% of all PUFAs). Studies of the ratio of SFA: MUFA: PUFA and omega-6: omega-3 have identified the feasibility of using nut meal in food technology to balance their fatty acid composition. Nut meal contains some organic acids, mainly citric, succinic, fumaric and malic. It is noted that SHVG significantly exceeds CNM in the content of malic and fumaric acids - 5.3 and 100 times, respectively. Pine nut meal has a higher content of citric and succinic acids (2.9 and 2.2 times, respectively). Despite the fact that the total nuber of organic acids does not meet the recommended consumption standards, the use of CNM and WNM in food technology will provide opportunities to slightly increase the content of these nutrients in the finished product. It was found that the composition of CNM includes 11.27 mg / 100 g of aromatic acids and their derivatives, and the composition of WNM - 4.75 mg / 100 g, respectively. However, compared to other phenolic compounds, aromatic acids have less biological activity. In view of the above, further studies on the establishment of the content of polyphenols and polymeric phenolic compounds in CNM and WNM are promising.

Author Biography

Kateryna V. Dil, Oles Honchar Dnipro National University

Аспірантка, хімічний факультет,

References

Tsentr hromadskoho zdorovia MOZ Ukrainy. (2021). Chas obyraty zdorovia. Retrieved from https://www.phc.org.ua/news/pravilne-kharchuvannya-pid-chas-pandemii.

Petrović-Oggiano, G., Debeljak-Martačić, J., Ranković, S., Pokimica B., Mirić, A., Glibetić, M., & Popović, T. (2020). The Effect of walnut consumption on n-3 fatty acid profile of healthy people living in a non-mediterranean west Balkan Country, a small scale randomized study. Nutrients, 12(1), 192, 1-11. doi: https://doi.org 10.3390/nu12010192

Feng, L., Peng, F., Wang, X., Hongjie, M., & Huaide, L. X. (2019). Identification and characterization of antioxidative peptides derived from simulated in vitro gastrointestinal digestion of walnut meal proteins. Food research international, 116, 518–526. Retrieved from https://www.sciencedirect.com/science/article/abs/pii/S0963996918306835

Rock, C. L., Flatt, S. W., Barkai, H.-S., Pakiz, B., & Heath D. D. A. (2018). Walnut-containing meal had similar effects on early satiety, CCK, and PYY, but attenuated the postprandial GLP-1 and insulin response compared to a nut-free control meal. Appetite. 117, 51–57. doi: https://doi.org 10.1016/j.appet.2017.06.008.

Neale, E. P., Tran, G., & Brown, R. C. (2020). Barriers and Facilitators to Nut Consumption: A Narrative Review. International Journal of Environmental Research and Public Health.; 17(23):9127. Published online. doi: https://doi.org 10.3390/ijerph17239127.

Brown, R., Gray, R. A., Chua, M. G., Ware, L., Chisholm, A, & Tey, S. L. (2021). Is a handful an effective way to guide nut recommendations? Randomized controlled trial. International Journal of Environmental Research and Public Health. 23;18(15):7812. doi: https://doi.org 10.3390/ijerph18157812.

Holscher, H. D., Guetterman, H. M., Swanson, K. S., Ruopeng, A., Matthan, N. R., Lichtenstein A. H., Novotny, J. A., & Baer D. J. (2018). Walnut consumption alters the gastrointestinal microbiota, microbially derived secondary bile acids and health markers in healthy adults: a randomized controlled trial. The Journal of Nutrition, 148(6), 861–867. doi: https://doi.org 10.1093/jn/nxy004

Tomaino, A., Martorana, M., Arcoraci, T., Monteleone, D., Giovinazzo, C., & Saija, A. (2010). Antioxidant activity and phenolic profile of pistachio (Pistacia vera L., variety Bronte) seeds and skins. Biochimie, 92(9), 1115–1122. doi: https://doi.org 10.1016/j.biochi.2010.03.027

Jackson, C. L., & Frank, B. H. (2014). Long-term associations of nut consumption with body weight and obesity. American journal of clinical nutrition, 100, 1(1):408-411. doi: https://doi.org 10.3945/ajcn.113.071332

Zheng, Y., Wu S., Wang R., Wu Y., Zhang, W., Han, Y., Tang, F., Shen D., & Liu, Y. (2020) Analysis and correlationship of chemical components of various walnut (Juglans regia L.) cultivars. Journal of Food Measurement and Characterization, 14(6), 3605-3614. doi: https://doi.org /10.1007/s11694-020-00603-0

Moodley, R., Kindness, A., & Sreekanth, B. (2007). Elemental composition and chemical characteristics of five edible nuts (almond, Brazil, pecan, macadamia and walnut) consumed in Southern Africa. Journal of Environmental Science and Health. Part B, 42(5), 585–591. https://doi.org /10.1080/ 03601230701391591

Pan Z., Zhang R., Zicari, S. (2019). Integrated processing technologies for food and agricultural By-Products/Walnuts, 391–411. Retrieved from https://www.sciencedirect. com/science/book/9780128141380.pdf

Cittadini, M. C., Martín, D., Gallo, S., Fuente, G., Bodoira, R, Martínez, M., Maestri, D. (2020). Evaluation of hazelnut and walnut oil chemical traits from conventional cultivars and native genetic resources in a non-traditional crop environment from Argentina. European Food Research and Technology, 113. doi: https://doi.org /10.1007/s00217-020-03453-8

Chynni obmezhennia na palmovu oliiu v krainakh YeS. (2021). Retrieved from http://euinfocenter.rada.gov.ua/uploads/documents/29481.pdf

Lyshaeva, L., Domoroshchenkova, M., & Kyryllova, O. (2010). Razvytye myrovoho runka shrotov y zhmukhov. Kombykorma, 6, 15–17.

Wang, G., Zhong, D., Liu, H., Yang, T., Liang, Q., Wang, J., Zhang, R., & Zhang, Y. (2021). Water soluble dietary fiber from walnut meal as a prebiotic in preventing metabolic syndrome. Journal of Functional Foods, 78, 104358. doi: https://doi.org /10.1016/j.jff.2021. 104358.

Osendarp, S.J.M., Martinez, H., Garrett, G. S., Neufeld, L. M., De-Regil M. L., Vossenaar, M., & Darnton-Hill, I. (2018). Large-scale food fortification and biofortification in low- and middle-income countries: a review of programs, trends, challenges, and evidence gaps. Food Nutr Bull, 39(2), 315–331. doi: https://doi.org: 10.1177/0379572118774229.

Shydakova-Kameniuka, O. H., Novik, H. V., Chernushenko, O. O., Matsuk, Yu.A. (2018). Doslidzhennia osoblyvostei skladu shrotiv kedrovoho i voloskoho horikhiv ta zdobnoho pechyva z yikh vykorystanniam metodom ICh-spektroskopii. Naukovyi visnyk LNUVMB im. S.Z. Hzhytskoho. LNUVMB Lviv, 20(85), 56–61. doi: https://doi.org :10.15421/nvlvet8511

Shydakova-Kameniuka, O. H., Novik, H.V., Kasabova, K.R., & Kravchenko, O. I. (2015). [Perspektyvy vykorystannia shrotiv kedrovoho ta hretskoho horikhiv dlia zbahachennia boroshnianykh kondyterskykh vyrobiv]. Prohresyvni tekhnika ta tekhnolohii kharchovykh vyrobnytstv restorannoho hospodarstva i torhivli: zb. nauk. prats, 2(13), 77–84. (In Russian).

Shydakova-Kameniuka, E., Novyk, A., & Bolkhovytyna, E. (2017). [Analyz soderzhanyia osnovnukh pyshchevukh veshchestv v produktakh pererabotky hretskoho y kedrovoho orekha]. Scientifik Letters of Academic of Michal Baludansky, 5(4), 121–124. (In Russian).

Naumova, N. L., Buchel, A. V., Lukyn, A. A., & Myhulia, Y. Yu. (2018). [Rezultatu yssledovanyi prymenenyia zhmгkha yader kedrovoho orekha v retsepture pechenochnoho pashteta]. Vestnyk KamchatHTU, 45, 50–57. https:/doi.org/10.17217/2079-0333-2018-45-50-57. (In Russian).

Nahovskaia, V.O. Slyvka, N. B. Khachak, Yu. R., Mykhailytskaia, O.R, & Byluk O.E. (2020). [Tekhnolohyia spreda s razrabotkoi shrota kedrovoho orekha[. Nauchnui vestnyk LNU veterynarnoi medytsynu y byotekhnolohyi. 22 (93): 9-14 doi: https://doi.org / 10.32718 / nvlvet-f9302 (In Russian).

Treviño, M. G. M., Galvão Do Vale D. O., Treviño A. P. E., Ruíz N. L. T., Moreno, F. R. (2021). Development and Analysis of a Product Made from Pink Pine Nuts in the South of Nuevo León. International Journal of Food Engineering, 7(2), 29-34. doi: https://doi.org: 10.18178/ijfe.7.2.29-34

Dyshluk, L. S., Sukhikh, S. A., Ivanova, S. A., Smirnova, I. A., Subbotina, M. A., Pozdnyakova, A. V., Neverov, E. N., & Garmashov, S. Yu. (2018). Prospects for using pine nut products in the dairy industry. Foods and Raw Materials. 6(2), 264–280. doi: https://doi.org: 10.21603/2308-4057-2018-2-264-280.

Zhao, M.-Y., Ling Show, T., Ju, X.-X., Dai, Y., Zhao, Y.-H. (2017). Component analysis of pine nut skin and its application in yogurt. Modern food science and technology, 33(7), 133–140 doi: 10.13982/j.mfst.1673-9078.2017.7.020

Honchar, V. V., Shulvynskaia, Y. V., & Zaichenko, E. Yu. (2008). Yspolzovanye kedrovukh orekhov pry proyzvodstve zavarnukh prianychnukh yzdelyi. Yzvestyia vuzov. Pyshchevaia tekhnolohyia, 2(3), 52–54.

Shydakova-Kameniuka, O. H., Rohova, A. L., & Misiulia, I. (2013, October). Vplyv diietychnoi dobavky «Klitkovyna yader voloskoho horikha» na yakist tsukrovoho pechyva. Prohresyvni tekhnika ta tekhnolohii kharchovykh vyrobnytstv : zb. nauk. prats, 1(17), 128–134.

Kravchenko M., Tkachenko L., & Mykhailyk V. (2016). Tekhnolohiia pisochnoho pechyva zi shrotamy oliinykh kultur. Tovary i rynky, 2, 138–147.

Lysiuk, H. M., & Shydakova-Kameniuka, O. H. (2011, September). Doslidzhennia yakosti zavarnykh prianykiv z vykorystanniam diietychnoi dobavky «Klitkovyna yader voloskoho horikhu». Prohresyvni tekhnika ta tekhnolohii kharchovykh vyrobnytstv : zb. nauk. prats, 2 (14), 233–238.

Pashova, N. V., Voloshchuk, H. I., Hrehirchak, N. M., & Karpyk, H. V. (2018). [Vplyv boroshna znezhyrenoho nasinnia oliinykh kultur ta poroshku topinambura na yakist ta bezpechnist zhytnoho khliba]. Prodovolchi resursy, 11, 139–147. (In Ukrainian).

[Sposob proyzvodstva khalvy]. (2008). 2335135 Rossyia: MPK A 23 G3/48. № 2007112442/13. (In Russian).

[Sposob proyzvodstva nachynky dlia konfet, karamely]. (2011). 2450529 Rossyia: MPK A 23 G3/34. № 2011110566/10. (In Russian).

Patel, M. R., Martin-Gonzalez, & M. F. San. (2012). Characterization of ergocalciferol loaded solid lipid nanoparticles. Journal of Food Science, 77, 8–13. doi: 10.1111/j.1750-3841.2011.02517.x

Candela, G. C, López B., L. M, & Kohen, L. V. (2011). Importance of a balanced omega 6/omega 3 ratio for the maintenance of health: nutritional recommendations. Nutrición Hospitalaria, 26(2), 323–329 doi: https://doi.org: 10.3305/nh.2011.26.2.5117.

Kondratiuk, N., Harkusha, I. (2016). [Doslidzhennia ta analiz skladu shokoladno-horikhovoi pasty z polifunktsionalnymy vlastyvostiamy]. Vostochno-Evropeiskyi zhurnal peredovykh tekhnolohyi,

(10(79)), 36–41. DOI: https://doi.org: 10.15587/1729-4061.2016.59693 (In Ukrainian).

Rockenbach, I. I., Rodrigues, E., Gonzaga, L. V., Caliari, V., Genovese, M. I., Gonçalves, A. E., & Fett, R. (2011). Phenolic compounds content and antioxidant activity in pomace from selected red grapes (Vitis vinifera L. and Vitis labrusca L.) widely produced in Brazil. Food Chemistry, 127(1), 174–179. https://doi.org: 10.1016/j.foodchem. 2010.12.137.

Amaral, J. S., Casal S., Pereira, J. A., Seabra R. M., & Oliveira B. P. P. (2003, February). Determination of sterol and fatty acid compositions, oxidative stability, and nutritional value of six walnut (Juglans regia L.) cultivars grown in Portugal. Journal agric food chem, 51(26), 7698 – 7702.

Cittadini, M. C., Martín, D., Gallo, S., Fuente, G., Bodoira, R., Martínez, M., & Maestri, D. (2020). Evaluation of hazelnut and walnut oil chemical traits from conventional cultivars and native genetic resources in a non-traditional crop environment from Argentina. European Food Research and Technology, 246, 833–843. doi: https://doi.org /10.1007/s00217-020-03453-8

Yilmaz, M. A. (2019). Quantitation of Fat Soluble Vitamins in Different Walnut Genotypes and Commercial Cultivars; a Comprehensive and Robust LC-MS/MS Method Validation. Journal of the Institute of Science and Technology 9(1), 562–571. doi: https://doi.org /10.21597/jist.505945

Afanaseva, V.A., & Alferov, S.V. (2018, June). Opredelenie sootnosheniya polinenasyshennyh zhirnyh kislot v pishevyh maslah. Izvestiya TulGUyu Estestvennye nauki, 4, 76–83.

Voskanian, O.S., Nykytyn, Y.A., Klokonos, M.V., & Huseva, D.A. (2020). [Optymyzatsyia sostavlenyia kupazhei rastytelnykh masel po soderzhanyiu nenasyshchennykh zhyrnukh kyslot metodom polnoho perebora (brute force)] Pyshchevaia promushlennost, 1, 8–13. doi: https://doi.org 10.24411/0235-2486-2020-10003 (In Russian).

Downloads

Published

2022-01-21