BINDING ACTIVITY OF THE QUADRUPLE BONDING DIRHENIUM(III) COMPOUND WITH BENZIMIDAZOLE LIGANDS TO NON-CANONICAL DNA

Authors

DOI:

https://doi.org/10.15421/jchemtech.v29i2.229841

Keywords:

Dirhenium(III) complexes, G4 DNA, benzimidazole, binding constant

Abstract

The aim of the work was to investigate the binding activity of the quadruple bonding dirhenium(III) compound with benzimidazole ligands to G4 DNA. Dirhenium(III) complexes with an unique quadruple bond are especially promising candidates for clinical development due to their very low toxicity, anticancer and antioxidant activity The binding affinity of G4 DNA to Re(III) complexes was obtained from UV–vis absorption titration. We have obtained data about the considerable hyperchromism and significant shift of the absorption maximum to the low wave side (blue shift) in UV-region usually correlating with a conformational change for G4 DNA on binding or complex formation for substances-groove binders. The electronic absorption titrations indicate that dirhenium complex compound with benzimidazole ligands interacts relatively strongly with G4 (Kb = 5.258·104 for c-kit1 and 4.653·104 for HTelo22). We have found, that addition of the G4-quadruplexes (ckit-1 or HTelo22) led to the intensive increase of the absorption maximum in visible region, that was the same for both nucleotides. This increasing of intensity can’t describe formation of any other complex without containing the quadruple bond. We may assume that this absorption appeared due to di(tri, poly)-merization of the nucleotide-complex compound. Hyperchromicity and binding constant of dirhenium(III) complex compound is higher for c-kit1 in comparison to HTelo22, thus suggesting that c-kit displays enhanced interaction. The HTelo22 sequence contains no free guanines besides those participating in the G4 fold whereas c-kit1 features three non-stacked guanines, making them potentially accessible for an easier covalent binding of dirhenium(III) compound with benzimidazole ligands.

References

Neidle, S. (2017). Quadruplex nucleic acids as targets for anticancer therapeutics. Nat. Rev. Chem., 0041(1), 1–10. http://dx.doi.org/10.1038/s41570-017-0041

Terenzi, A., Lötsch, D., Van Schoonhoven, S.. Roller, A., Kowol, C. R., Berger, W., Keppler, B. K., Barone, G. (2016). Another step toward DNA selective targeting: NiII and CuII complexes of a Schiff base ligand able to bind gene promoter G-quadruplexes. Dalton Trans., 45(18), 7758–7767. https://doi.org/10.1039/C6DT00648E

Ou, Z., Wang, Y., Gao, Y., Wang, X., Qiana, Y., Li, Y., Wang, X. (2017). Targeting human telomeric and c-myc G-quadruplexes with alkynylplatinum(II) terpyridine complexes under molecular crowding conditions. J. of Inorg. Biochem., 166., 126–134.

https://doi.org/10.1016/j.jinorgbio.2016.11.012

Zhou, C.-Q., Liao, T.-C., Li, Z.-Q., Gonzalez-Garcia, J., Reynolds, M., Zou, M., Vilar, R. (2017). Dinickel-Salphen Complexes as Binders of Human Telomeric Dimeric G-Quadruplexes. Chemistry, 23(19), 4713–4722. https://doi.org/10.1002/chem.201700276

Mergny J.-L., Sen D. (2019). DNA Quadruple Helices in Nanotechnology. Chem. Rev., 119(10). 6290–6325. http://dx.doi.org/10.1021/acs.chemrev.8b00629

Esfahani, N. H., Salami, F., Saberi, Z., Karami, K., Lighvan, Z. M., Ramezani, M., Alibolandi, M., Farzad, S. A., Khayamian, T. (2019). DNA G-quadruplexes binding and antitumor activity of palladium aryl oxime ligand complexes encapsulated in either albumin or algal cellulose nanoparticles. Colloids Surf B Biointerfaces., 176, 70–79.

http://dx.doi.org/10.1016/j.colsurfb.2018.12.050.

Georgiades, S. N., Karim, N. H. A., Suntharalingam, K., Vilar, R. (2010). Interaction of metal complexes with G-quadruplex DNA. Angew Chem Int Ed Engl. 49(24), 4020‒4034. http://dx.doi.org/10.1002/anie.200906363.

Kaulage, M. H., Maji, B., Pasadi, S., Ali, A., Bhattacharya, S., Muniyappa, K. (2018). Targeting G-quadruplex DNA structures in the telomere and oncogene promoter regions by benzimidazole‒carbazole ligands. European Journal of Medicinal Chemistry., 148, 178‒194. http://dx.doi.org/10.1016/j.ejmech.2018.01.091.

Shtemenko, A. V., Shtemenko, N. I. (2017). Rhenium–platinum antitumor systems. Ukr. Biochem. J., 89(2), 5–30. http://dx.doi.org/10.15407/ubj89.02.005

Velychko, O. V., Golichenko, O. A., Shtemenko, O. V. (2019). The dirhenium(III) complex compounds with imidazole and benzimidazole. Visnyk ONU. Ser. Khimija, 24(3) (71), 26–38. https://doi.org/10.18524/2304-0947.2019.3(71).177731.

Leus, I. V., Klenina, I. O., Zablotska, K. A., Golichenko, O. A., Shtemenko, O. V., Shtemenko, N .I. (2011). Interaction of serum albumines with cluster rhenium compounds of cis- and trans-configuration. Biopolymers and Cell. 27(6), 465–471. https://doi.org/10.7124/bc.000119

Polokhina, K., Golichenko, O., Babiy, S., Dzhumaniyazova, O., Shtemenko, O., Shtemenko, N. (2016). Study of the interaction between rhenium cluster compounds with biologically active ligands and supercoiled DNA by electron spectroscopy. Visnyk Ljvivsjkogho universytetu. Serija biologhichna, 72, 15–24. http://nbuv.gov.ua/UJRN/VLNU_biol_2016_72_4.

Shtemenko, N. I, Chifotides, H. T., Domasevich, K. V., Golichenko, A. A., Babiy, S. A., Li, Z., Paramonova, K. V., Shtemenko, A. V., Dunbar, K. R. (2013). Synthesis, X-ray Structure, Interactions with DNA, Remarkable in vivo Tumor Growth Suppression and Nephroprotective Activity of cis-Tetrachloro-dipivalato Dirhenium(III). J. Inorg. Biochem., 129, 127–134.

http://dx.doi.org/10.1016/j.jinorgbio.2013.09.001

Kieltyka, R., Fakhoury, J., Moitessier, N., Sleiman, H. F. (2008) Platinum phenanthroimidazole complexes as g-quadruplex DNA selective binders Chem. Eur. J., 14, 1145–1154.

http://dx.doi.org/10.1002/chem.200700783

Shtemenko, A. V., Chifotides, H. T., Yegorova, D. E., Shtemenko, N. I., Dunbar, K. R. (2015). Synthesis and X-ray crystal structure of the dirhenium complex Re2(i-C3H7CO2)4Cl2 and its interactions with the DNA purine nucleobases. J. of Inorg. Biochem., 153, 114–120. http://dx.doi.org/10.1016/j.jinorgbio.2015.06.012

Stafford, V. S., Suntharalingam, K., Shivalingam, A., White, A. J. P., Mann, D. J., Vilar, R. (2015). Syntheses of polypyridyl metal complexes and studies of their interaction with quadruplex DNA. Dalton Trans., 44, 3686–3700. http://dx.doi.org/10.1039/C4DT02910K

Rodríguez, J., Mosquera, J., Couceiro, J. R., Vázquez M. E., Mascareñas, J. L. (2016). Ruthenation of Non-stacked Guanines in DNA G-Quadruplex Structures: Enhancement of c-MYC Expression. Angew. Chem., Int. Ed., 55, 15615–15618.

http://dx.doi.org/10.1002/anie.201607965.

Hager, L. A., Mokesch, S., Kieler, C., Alonso-de Castro, S., Baier, D., Roller, A., Kandioller, W., Keppler, B. K., Berger, W., Salassa, L., Terenzi, A. (2019). Ruthenium–arene complexes bearing naphthylsubstituted 1,3-dioxoindan-2-carboxamides ligands for G-quadruplex DNA recognition. Dalton transaction, 48, 12040-12049. http://dx.doi.org/10.1039/C9DT02078K.

Shtemenko, A. V., Collery, P., Shtemenko, N. I., Domasevitch, K. V., Zabitskaya, E. D., Golichenko, A. A. (2009). Synthesis, characterization, in vivo antitumor properties of the cluster rhenium compound with GABA ligands and its synergism with cisplatin. Dalton Trans., 26, 5132–5136. http://dx.doi.org/10.1039/b821041a

Flamme, M., Clarke, E., Gasser, G, Hollenstein, M. (2018). Applications of Ruthenium Complexes Covalently Linked to Nucleic Acid Derivatives. Molecules, 23(7), 1515–1549. http://dx.doi.org/10.3390/molecules23071515

Pont, I., González‐García, J., Inclán, M., Reynolds, M., Delgado‐Pinar, E., Albelda, M. T., Vilar, R., García‐España E. (2018). Aza-Macrocyclic Triphenylamine Ligands for G-Quadruplex Recognition. Chem. Eur. J., 24, 10850–10858. https://doi.org/10.1002/chem.201802077

Husak, Y. V., Ovcharenko, A. A., Golichenko, A. A., Shtemenko, A. V. (2020). Synthesis and stability of the dirhenium(III) cluster compounds with isoleucine, serine and proline in aqueous solutions. Voprosy khimii i khimicheskoi tekhnologii, 6, 38–43. http://dx.doi.org/10.32434/0321-4095-2020-133-6-38-43.

Haris, P., Mary, Varughese, Haridas M., Sudarsanakumar, C. (2015). Energetics, Thermodynamics, and Molecular Recognition of Piperine with DNA. J. Chem. Inf. Model, 2015, 55(12), 2644–2656. https://doi.org/10.1021/acs.jcim.5b00514

Downloads

Published

2021-07-20

Issue

Section

Physical and inorganic chemistry