ISOTHERMAL SECTION AT 1500 °C FOR THE СeO2–La2O3–Sm2O3 SYSTEM
DOI:
https://doi.org/10.15421/jchemtech.v29i2.230369Keywords:
phase equilibria, phase diagram, solid solution, lattice parameters, functional ceramicsAbstract
Based on the studied phase equilibria, it is established that in these systems substitution-type solid solutions are formed on the basis of various crystalline modifications of the initial components. In the CeO2–La2O3–Sm2O3 system solid solutions based on cubic (F) with a fluorite-type structure of CeO2 modification, monoclinic (B), cubic (C), hexagonal (A) modifications of Ln2O3 are formed. The phase boundaries and lattice parameters of the phases were determined. It is established that the parameters of the F-CeO2 unit cell increase with the content of Ln3+. The regularities observed for the parameters of the elementary cells are based on the competition of two factors, including the average ionic radius and the repulsion of the boundaries of the same charged ions in the crystal lattice as a result of substitution. The lattice parameters of the fluorite-type (F-CeO2) cubic solid solutions changed from a = 0.5409 nm for pure СеО2 to а = 0.5576 nm for the three-phase (A + B + F) 50 % mol CeО2–37.5% mol La2O3–12.5% mol Sm2O3 sample along the СеО2–(75 % mol La2O3–25 % mol Sm2O3) section. The length of the F-phase is determined by RDX of samples of the following compositions: 60 mol % CeO2–20 mol % La2O3–20 mol % Sm2O3, 55 mol % CeO2–33.75 mol % La2O3–11.25 mol % Sm2O3, 65 mol % CeO2–8.75 mol % La2O3–26.25 mol % Sm2O3- single-phase (F), 55 mol % CeO2–22.5 mol % La2O3–22.5 mol % Sm2O3, 60 mol % CeO2–10 mol % La2O3–30 mol % Sm2O3- two-phase (F + C) and 50 mol % CeO2–37.5 mol % La2O3–12.5 mol % Sm2O3- three-phase (A + F + B). The isothermal section of the CeО2–La2O3–Sm2O3 phase diagram at 1250 °C contains two three-phase (A + F + B, F +B + C) and five two-phase (A + F, A + B, F + B, B + C, F + C) regions. The results of the study of phase equilibria in the ternary CeO2–La2O3–Sm2O3 system are presented as reference material and can be used, in particular, for design and development of new materials.
References
Artini, C. (2018) Rare-Earth-Doped Ceria Systems and Their Performance as Solid Electrolytes: A Puzzling Tangle of Structural Issues at the Average and Local Scale. Inorg. Chemictry. 57, 13047−13062. https://doi.org/10.1021/acs.inorgchem.8b02131
Schmitt, R., Nenning, A., Kraynis, O., Korobko, R., Frenkel, A. I., Lubomirsky, I., Hailef, S. M., Jennifer, L. M. (2020) A review of defect structure and chemistry in ceria and its solid solutions. Chem. Soc. Rev. 49, 554–592. https://doi.org/10.1039/C9CS00588A
Li, S., Lu, X., Shi, S., Chen, L., Wang, Z., Zhao, Y. (2020) Europium-Doped Ceria Nanowires as Anode for Solid Oxide Fuel Cells. Front . Chem. 8, 348–358. https://doi.org/10.3389/fchem.2020.00348
Anwar, M., Ali, S.A. M., Baharuddin, N. A., Raduwan, N. F., Muchtar, A., Somalu, M. R. (2018) Structural, optical and electrical properties of Ce0.8Sm0.2-xErxO2-δ (x=0–0.2) Co-doped ceria electrolytes. Ceram. Intern. 44, 13639–13648https://doi.org/10.1016/j.ceramint.2018.04.200
Vita A. (2020) Catalytic Applications of CeO2-Based Materials. Catalys. 10, 576-5579. doi:10.3390/catal10050576
Eriksson, P., Tal, A. A., Skallberg, A., Brommesson C., Hu Z., Boyd R. D., Olovsson W., Fairley N., Abrikosov I. A., Zhang X., Uvdal, K. (2018) Cerium oxide nanoparticles with antioxidant capabilities and gadolinium integration for MRI contrast enhancement. Scientif. Repor. 8, 6999–7011. https://doi.org 10.1038/s41598-018-25390-z
Datta, A., Mishra S., Manna K., Saha K. D., Mukherjee S., Roy S. (2020) Pro-Oxidant Therapeutic Activities of Cerium Oxide Nanoparticles in Colorectal Carcinoma Cells. Amer. Chem. Soc. Omeg. 5, 9714–9723. DOI: 10.1021/acsomega.9b04006
Wu, S., Zhao Y., Li W., Liu W., Wu Y., Liu F. (2021) Research Progresses on Ceramic Materials of Thermal Barrier Coatings on Gas Turbin. Coating. 11, 79–97. https://doi.org/10.3390/coatings11010079
Liu X.Y.; Yi H.; Che J.W.; Liang G.Y. (2019) Phase, compositional, structural, and chemical stability of La2Ce2O7 after high temperature heat treatment. Ceram. Intern. 45, 5030–5035. https://doi.org/10.1016/j.ceramint.2018.11.204
Foex M. Sibieude F., Rouanet A., Hernandez D. (1975) Crystal-chemical effect of splat-cooling on a 30 mol % CeO2 70 mol % La2O3 mixed oxide. Jour. Mater. Scien. 10, 1255–1257. https://doi.org/10.1007/BF00541415
Brauer G., Gradinger H. (1954) Über heterotype Mischphasen bei Seltenerdoxyden. Z. Anorg. Algem. Chem. 276, 209–226.
https://doi.org/10.1002/zaac.19542760502
Bacquet G., Bouysset C., and Hernandez D. (1976) E.S.R. of Gd3+ in La2O3 and its solid solutions with CeO2. Jour. Phys. 37 (12), 204–207. DOI : 10.1051/jphyscol:1976747
Bevan D.J.M. and Mann A.W. (1975) The crystal structure of Y7O6F9. Acta Cryst. B31, 1406–1411. https://doi.org/10.1107/S0567740875005298
Minkova N. and Aslanian S. (1989) Isomorphic substitutions in the CeO2–La2O3 system at 850 °C. Cryst. Res. Technol. 24, 351–354. https://doi.org/10.1002/crat.2170240402
Sung B.J., Kil C.W., Hee L.C. (2004) The crystal structure of ionic conductor LaxCe1–xO2–x/2. Jour. Europ. Cer. Soc. 24, 1291–1294. https://doi.org/10.1016/S0955-2219(03)00499-0
Morris B. C., Flavell W. R., Mackrodt W. C., and Morris M. A. (1993) Lattice parameter changes in the mixed oxide system LaxCe1–xO2–-x/2 – a combined experimental and theoretical study. Jour. Mater. Chem. 3 (10), P. 1007.
Sibieude F., Schiffmacher G., and Caro P. (1978) Étude au microscope électronique de structures modulées dans les régions systéme La2O3–CeO2 riches en La2O3. J. Solid State Chem., 23 (3-4), 361–367. https://doi.org/10.1016/0022-4596(78)90085-3
Andrievskaya E.R., Kornienko O.A., Sameljuk A.V., Sayir A. (2011) Phase relation studies in the CeO2–La2O3 system at 1100 to 1500 °С. J. Eur. Cer. Soc. 31 (7), 1277–1283. https://doi.org/10.1016/j.jeurceramsoc.2010.05.024
Mandal B. P., Grover V., Tyagi A.K. (2006) Phese relations, lattice thermal expension in Ce 1–xSmxO2–x/2 systems and stabilization of cubic RE2O3 (RE: Eu, Sm). Mater. Sci. Engineer. A, 430, P.120–124. https://doi.org/10.1016/j.msea.2006.05.140
Bevan, D.J.M., Sammerville, E. (1976) Handbook on the Phusics and Cemestry on rare Earths. North-Holland, Elsevier –1979 – V. 3 – P. 664.
Andrievskaya, E.R, Kornienko, O.A., Gorodov, V.S., Cherkasova, К.А., Zgurovets, V.О. (2008). [Phase relations in the CeO2–Sm2O3 system at 1500 °C]. Current problems of physical material science, 17, 25–29. (in Ukrainian).
Аndrievskaya О.R., Коrnienko О.А., Yurchenko Yu.V. (2020) Phase relation studies in the CeO2–Sm2O3 system at 1500 to 600 °C in air. Resear. Devel. Mater. Sci. 12 (4), 1308–1314. DOI: 10.31031/RDMS.2020.12.000795
Коrnienko, О.А. (2018) Interaction of lanthanum and samarium at temperature 1250 °C. Ukrain. Chem. Jour. 84 (3), 28–33. (in Ukrainian).
Korniienko, O.A., Bykov, A.I. Andrievskaya E.R. (2020) Phase Equilibria in the ZrO2–La2O3–Sm2O3 System at 1100°C. Powder Metall Met Ceram. 59 (3–4), 224–231. https://doi.org/10.1007/s11106-020-00154-5
Kornienko, O. A., Аndrievskaya, О. R., Bykov, O. I., Sameljuk, A. V., Bataiev, Yu. M. (2021) Phase equilibrium in systems based on oxides of zirconium, lanthanum and samarium. Jour. of the Europ. Ceram. Soc., 41, 3603–3613.
https://doi.org/10.1016/j.jeurceramsoc.2021.01.004
Grover, V., Chavan S.V., Sengupt P., Tyagi A.K. (2010) CeO2–YO1.5–NdO1.5 system: An extensive phase relation study. J. Europ. Ceram. Soc. 30, P. 3137–314. https://doi.org/10.1016/j.jeurceramsoc.2010.06.005
Аndrievskaya, О. R., Kornienko O.A., Bykov О. І., Chudinovic O.V., Spasonova L.N. (2021) Isothermal section for the system CeO2-Lа2O3-Eu2O3 at 1500°C. Proces. and Applic. Ceram. 15 (1), 32–39. https://doi.org/10.2298/PAC2101032A
Kornienko, O.A., Bykov O., Sameliuk А., Yurchenko Y. (2020). Phase relations studies in the CeO2-La2O3-Eu2O3 system at 1250 °С. Ukrainian Chemistry Journal, 86(3), 35-47. (in Ukrainian). https://doi.org/10.33609/0041-6045.86.3.2020.35-47
Kornienko, O. A., Sameljuk A.V., Bykov О. І., Yurchenko Yu.V., Barshchevskaya A. K. (2020) Phase Relation Studies in the CeO2–La2O3–Er2O3 System at 1500°C Jour. of the Europ. Ceram. Soc. 40, 4184–4190. https://doi.org/10.1016/j.jeurceramsoc.2020.04.042
Korniienko, O.A., Bykov O.I., Sameljuk A.V. (2021) Phase equilibria in the CeO2–La2O3–Gd2O3 system at 1250 and 1500 °С Inter. Res. J. of Multidiscip. Techn.. 3 (4), 17 – 31. https://doi.org/10.34256/irjmt2143
Downloads
Published
Issue
Section
License
Copyright (c) 2021 Дніпровський національний університет імені Олеся Гончара
This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors reserve the right of attribution for the submitted manuscript, while transferring to the Journal the right to publish the article under the Creative Commons Attribution License. This license allows free distribution of the published work under the condition of proper attribution of the original authors and the initial publication source (i.e. the Journal)
- Authors have the right to enter into separate agreements for additional non-exclusive distribution of the work in the form it was published in the Journal (such as publishing the article on the institutional website or as a part of a monograph), provided the original publication in this Journal is properly referenced
- The Journal allows and encourages online publication of the manuscripts (such as on personal web pages), even when such a manuscript is still under editorial consideration, since it allows for a productive scientific discussion and better citation dynamics (see The Effect of Open Access).