• Vasiliy G. Shtamburg Ukrainian State Chemical Technology University, Ukraine
  • Victor V. Shtamburg Ukrainian State Chemical Technology University, Ukraine
  • Andrey A. Anishchenko Oles Honchar Dnipro National University, Ukraine
  • Eduard B. Rusanov Institute of Organic Chemistry of National Academy of Sciences of Ukraine, Ukraine
  • Svеtlana V. Kravchenko Dnipro State Agrarian and Economic University, Ukraine



1-ethoxy-3aS,8aR-dihydroxy-3-(1-naphthyl)methyl-1,3,3a,8a-tetrahydroindeno[1,2-d]imidazole-2,8-dione, structure, cis-isomer, elongated C–C bond, ninhydrin, N-alkoxyureas.


Aim. Definition of the structure of 1-ethoxy-3a,8a-dihydroxy-3-(1-naphthyl)methyl-1,3,3a,8a-tetrahydroindeno[1,2-d]imidazole-2,8-dione. Methods. XRD study of the structure, mass spectrometry, 1H and 13C NMR spectroscopy.  Results. It has been found that ninhydrin reacts with N-ethoxy-N’-(1-naphthyl)methylurea yielding only one of the possible diastereomers of 1-ethoxy-3a,8a-dihydroxy-3-(1-naphthyl)methyl-1,3,3a,8a-tetrahydroindeno[1,2-d]imidazole-2,8-dione such as the diastereomer. The structure of 1-ethoxy-3aS,8aR-dihydroxy-3-(1-naphthyl)methyl-1,3,3a,8a-tetrahydroindeno[1,2-d]imidazole-2,8-dione has been analyzed by XRD study. The formation of alternative trans-3a(HO),8a(HO)-diastereomer has not been observed. Conclusions. In 1-ethoxy-3aS,8aR-dihydroxy-3-(1-naphthyl)methyl-1,3,3a,8a-tetrahydroindeno[1,2-d]imidazole-2,8-dione the 3a- and 8a-hydroxyl groups are cis-oriented to each other. There are two independent molecules of the compound 15 (15A and 15B) in the asymmetric part of the unit cel. The length of the N–O bond is also different for both molecules 15A and 15B.  In the molecule 15A the length of the N(2)–O(5) bond is 1.396(7) Å, in the molecule 15B the length of the N(4)–O(10) bond is 1.405(7) Å. It has found the new case of the existence of urea derivatives as a mixture of the two forms which differ by the pyramidality degree of the nitrogen atom and the lengths of the nitrogen atom bonds. In the both independent molecules the imidazolidinone cycle adopt the envelope conformation. In the both independent molecules the similar elongation of the C(3a)–C(8a) and C(8)–C(8a) bonds has been found.


Van Slyke, D.D.; Hamilton, P.B. (1943). The Synthesis and Properties of Ninhydrin Ureide. J. Biol. Chem., 150(2), 471–476.

Shapiro, R.; Chatterjie, N. (1970). Cyclization Reactions of Ninhydrin with Aromatic Amines and Ureas, J. Org. Chem., 35(2), 447–450.

Azizian, J.; Karimi, A.R.; Soleimani, E.; Mohammadi, A.A.; Mohammadizadeh, M.R. (2006). Highly Functionalized Dihydrofuran Derivatives: Synthesis by Diastereoselective Intramolecular Wittig Reaction, Heteroatom. Chem., 17(4), 277–279.

Jong, J.A.W.; Moret, M.-E.; Verhaar, M.C., Hennink, W.E.; Gerritsen, K.G.F.; Van Nostrum, C.F. (2018). Effect of Substituents on the Reactivity of Ninhydrin with Urea, ChemistrySelect, 3, 1224–1229.

Jong, J.A.W.; Smakman, R.; Moret, M.-E.; Verhaar, M.C., Hennink, W.E.; Gerritsen, K.G.F.; Van Nostrum, C.F. (2019). Reactivity of (Vicinal) Carbonyl Compounds with Urea , ACS Omega4, 11928–11937.

Patel, H.J.; Sarra, J.; Caruso, F.; Rossi, M.; Doshi, U.; Stephani, R.A. (2006). Synthesis and anticonvulsant activity of new N-1’,N-3’-disubstituted-2’H,3H,5’H-spiro-(2-benzofuran-1,4’-imidazolidine)-2’,3,5’-triones. Bioorg.Med.Chem.Lett., 16(17), 4644–4647.

Lenguel, I.; Patel, H.J.; Stephani, R.A. (2007). The preparation and characterization of nineteen new phthalidyl spirohydantoins. Heterocycles, 73, 349–375.

Sadarangani, I.R.; Bhatia, S.; Amarante, D.; Lenguel, I.; Stephani, R.A. (2012). Synthesis, resolution, and anticonvulsant activity of chiral N-1’-ethyl,N-3’-(phenylethyl)-(R,S)-2’H,3H,5’H-spiro-(2-benzofuran-1,4’-imidazolidine)-2’,3,5’-trione diastereomers. Bioorg.Med.Chem.Lett., 22(7), 2505–2509. http:/

Yang, C.; Schanne, F.A.X.; Yoganathan, S.; Stephani, R.A. (2016). Synthesis of N-1’,N-3’-disubstituted spirohydantoins and their anticonvulsant activities in pilocarpine model of temporal Iobe epilepsy. Bioorg.Med.Chem.Lett., 26(12), 2912–2914.

Casnati A.; Perrone A.; MazzeoP.P.; Bacchi A.; Mancuso R.; Gabriele B.; Maggi R.; Maestri G.; Motti E.; Stirling A.; Della Ca N. (2019). Synthesis of Imidazolidin-2-ones and Imidazol-2-ones via Base-Catalyzed Intramolecular Hydroamidation of Propargylic Ureas under Ambient Conditions. J. Org. Chem., 84(6),3477–3490.

Correia H.D.; Cicolani R.S.; Moral R.F.; Demets G.J.F. (2016). Easy Synthesis of trans-4,5-Dihidroxy-2-imidzolidinone and 2,4-Dmethylglycoluril. Synthesis, 48, 210–212.

Saloutina, L.V.; Zapevalov, A.Ya.; Slepukhin, P.A.; Kodess, M.I.; Saloutin, V.I.; Chupakhin, O.N. (2014). Synthesis of fluorine-containing imidazolidin-2-ones, glycolurils, and hydantoins based on perfluorodiacetyl and ureas. Chem. Heterocycl. Compound, 50, 958–967.

Mannick A-D.; Aubert S.; Yalcouye B.; Prange T.; Berhal F.; Prestat G. (2018). Access to Functionalized Imidazolidin‐2‐one Derivatives by Iron‐Catalyzed Oxyamination of Alkene. Chem. Eur J., 24(44), 11485–11492.

Ammar, Y.A.; El-Sharief, M.A.M. Sh.; Ghorab, M.M.; Mohamed, Y.A.; Ragab, A.; Abbas, S.Y. (2016). New imidazolidineiminothione, imidazolidin-2-one and imidazoquinoxaline derivatives: synthesis and evaluation of antibacterial and antifungal activities. Curr. Org. Synth., 13(3), 466–475.

Shtamburg, V.G.; Shtamburg, V.V.; Anishchenko, A.A.; Shishkina, S.V.; Mazepa, A.V.; Konovalova, I.S. (2020). Interactions of Ninhydrin with N-Hydroxyurea and N-Alkoxyureas in Acetic Acid. Eur. Chem. Bull., 9(5), 125–131. http:/ 16.

Shtamburg, V.G.; Shtamburg, V.V.; Anishchenko, A.A.; Mazepa, A.V.; Rusanov, E.B. (2021). Interaction of ninhydrin with N-alkoxy-N’-arylureas and N-alkoxy-n’-alkylureas. 1-Alkoxy-3-aryl(alkyl)-3a,8a-dihydroxy-1,3,3a,8a-tetrahydroindeno[1,2-d]imidazole-2,8-diones: synthesis and structure. J. Mol. Struct., in press.

Shtamburg, V.G.; Shtamburg, V.V.; Anishchenko, A.A.; Shishkina, S.V.; Mazepa, A.V.; Konovalova, I.S. (2019). 3-Alkoxy-1,5-diaryl-4,5-dihydroxyimidazolidin-2-ones and 3-Alkoxy-1-alkyl-5-aryl-4,5-dihydroxyimidazolidin-2-ones: Synthesis and Structure. Eur. Chem. Bull., 8(9), 282–290. http:/

Sheldrick G.M. (2008). A short history of SHELX, Acta Cryst., Sect. A., A64, 112–122.

Shishkin, O.V.; Shtamburg, V. G., Zubatyuk R. I.; Olefir, D.A., Tsygankov, A.V., Prosyanik, A.V., Mazepa, A.V., Kostyanovsky, R.G. (2009). Chiral Ureas with Two Electronegative Substituens at 1-N and Unusual Case of Coexisting a Pyramidal and Almost Planar 1-N in The Same Crystal, Chirality, 21(7), 642–647.

Shtamburg, V.G., Kostyanovsky, R.G., Tsygankov, A.V., Shtamburg, V.V., Shishkin, O.V., Zubatyuk, R.I., Mazepa, A.V., Kravchenko, S.V. (2015). Geminal Systems. Communication 64. N-Alkoxy-N-chloroureas and N,N-Dialkoxyureas, Russ. Chem. Bulletin. Intern. Ed., 64(1), 62–75.

Kostyanovsky, R.G.; Shtamburg, V.G.; Shishkin, O.V.; Zubatyuk R.I.; Shtamburg, V.V.; Anishchenko, A.A.; Mazepa, A.V. (2010). Pyramidal nitrogen in the crystal of N-[(benzoyl)-(hydroxy)methyl]-N-benzyloxy-N’-(2-bromophenyl)urea. Mendeleev Commun., 20, 167–169.

Burgi, H.-B., Dunitz, J.D. (1994). Structure correlation. VCH. Weinheim, 2, 741−784.

Agapiou, K.; Cauble,D.F.; Krische, M.J. (2004). Copper-Catalyzed Tandem Conjugate Addition–Electrophilic Trapping: Ketones, Esters, and Nitriles as Terminal Electrophiles, J. Am. Chem. Soc., 126(14), 4528–4529. 10.1021/ja030603l.

Deng, Qing-Hai; Wadepohl, H.; Gade, L.H. (2012). Highly Enantioselective Copper-Catalyzed Alkylation of β-Ketoesters and Subsequent Cyclization to Spirolactones/Bi-spirolactones, J. Am. Chem. Soc., 134(6), 2946–2949. 10.1021/ja211859w.