THE STRUCTURE OF 1-ETHOXY-3A,8A-DIHYDROXY-3-(1-NAPHTHYL)METHYL-1,3,3A,8A-TETRAHYDROINDENO[1,2-D]IMIDAZOLE-2,8-DIONE

Authors

  • Vasiliy G. Shtamburg Ukrainian State Chemical Technology University
  • Victor V. Shtamburg Ukrainian State Chemical Technology University
  • Andrey A. Anishchenko Oles Honchar Dnipro National University
  • Eduard B. Rusanov Institute of Organic Chemistry of National Academy of Sciences of Ukraine
  • Svеtlana V. Kravchenko Dnipro State Agrarian and Economic University

DOI:

https://doi.org/10.15421/jchemtech.v29i2.231195

Keywords:

1-ethoxy-3aS,8aR-dihydroxy-3-(1-naphthyl)methyl-1,3,3a,8a-tetrahydroindeno[1,2-d]imidazole-2,8-dione, structure, cis-isomer, elongated C–C bond, ninhydrin, N-alkoxyureas.

Abstract

Aim. Definition of the structure of 1-ethoxy-3a,8a-dihydroxy-3-(1-naphthyl)methyl-1,3,3a,8a-tetrahydroindeno[1,2-d]imidazole-2,8-dione. Methods. XRD study of the structure, mass spectrometry, 1H and 13C NMR spectroscopy.  Results. It has been found that ninhydrin reacts with N-ethoxy-N’-(1-naphthyl)methylurea yielding only one of the possible diastereomers of 1-ethoxy-3a,8a-dihydroxy-3-(1-naphthyl)methyl-1,3,3a,8a-tetrahydroindeno[1,2-d]imidazole-2,8-dione such as the diastereomer. The structure of 1-ethoxy-3aS,8aR-dihydroxy-3-(1-naphthyl)methyl-1,3,3a,8a-tetrahydroindeno[1,2-d]imidazole-2,8-dione has been analyzed by XRD study. The formation of alternative trans-3a(HO),8a(HO)-diastereomer has not been observed. Conclusions. In 1-ethoxy-3aS,8aR-dihydroxy-3-(1-naphthyl)methyl-1,3,3a,8a-tetrahydroindeno[1,2-d]imidazole-2,8-dione the 3a- and 8a-hydroxyl groups are cis-oriented to each other. There are two independent molecules of the compound 15 (15A and 15B) in the asymmetric part of the unit cel. The length of the N–O bond is also different for both molecules 15A and 15B.  In the molecule 15A the length of the N(2)–O(5) bond is 1.396(7) Å, in the molecule 15B the length of the N(4)–O(10) bond is 1.405(7) Å. It has found the new case of the existence of urea derivatives as a mixture of the two forms which differ by the pyramidality degree of the nitrogen atom and the lengths of the nitrogen atom bonds. In the both independent molecules the imidazolidinone cycle adopt the envelope conformation. In the both independent molecules the similar elongation of the C(3a)–C(8a) and C(8)–C(8a) bonds has been found.

References

Van Slyke, D.D.; Hamilton, P.B. (1943). The Synthesis and Properties of Ninhydrin Ureide. J. Biol. Chem., 150(2), 471–476.

Shapiro, R.; Chatterjie, N. (1970). Cyclization Reactions of Ninhydrin with Aromatic Amines and Ureas, J. Org. Chem., 35(2), 447–450.

Azizian, J.; Karimi, A.R.; Soleimani, E.; Mohammadi, A.A.; Mohammadizadeh, M.R. (2006). Highly Functionalized Dihydrofuran Derivatives: Synthesis by Diastereoselective Intramolecular Wittig Reaction, Heteroatom. Chem., 17(4), 277–279. https://doi.org/10/1002hc

Jong, J.A.W.; Moret, M.-E.; Verhaar, M.C., Hennink, W.E.; Gerritsen, K.G.F.; Van Nostrum, C.F. (2018). Effect of Substituents on the Reactivity of Ninhydrin with Urea, ChemistrySelect, 3, 1224–1229. https://doi.org/10/1002slct201800040.

Jong, J.A.W.; Smakman, R.; Moret, M.-E.; Verhaar, M.C., Hennink, W.E.; Gerritsen, K.G.F.; Van Nostrum, C.F. (2019). Reactivity of (Vicinal) Carbonyl Compounds with Urea , ACS Omega4, 11928–11937. https://doi.org/10/1021acsomega.9b01177

Patel, H.J.; Sarra, J.; Caruso, F.; Rossi, M.; Doshi, U.; Stephani, R.A. (2006). Synthesis and anticonvulsant activity of new N-1’,N-3’-disubstituted-2’H,3H,5’H-spiro-(2-benzofuran-1,4’-imidazolidine)-2’,3,5’-triones. Bioorg.Med.Chem.Lett., 16(17), 4644–4647. https://doi.org/10.1016/j.bmcl.2006.05.102

Lenguel, I.; Patel, H.J.; Stephani, R.A. (2007). The preparation and characterization of nineteen new phthalidyl spirohydantoins. Heterocycles, 73, 349–375.

Sadarangani, I.R.; Bhatia, S.; Amarante, D.; Lenguel, I.; Stephani, R.A. (2012). Synthesis, resolution, and anticonvulsant activity of chiral N-1’-ethyl,N-3’-(phenylethyl)-(R,S)-2’H,3H,5’H-spiro-(2-benzofuran-1,4’-imidazolidine)-2’,3,5’-trione diastereomers. Bioorg.Med.Chem.Lett., 22(7), 2505–2509. http:/dx.doi.org/10.1016/j.bmcl.2016.04.040

Yang, C.; Schanne, F.A.X.; Yoganathan, S.; Stephani, R.A. (2016). Synthesis of N-1’,N-3’-disubstituted spirohydantoins and their anticonvulsant activities in pilocarpine model of temporal Iobe epilepsy. Bioorg.Med.Chem.Lett., 26(12), 2912–2914. https://doi.org/10.1016/j.bmcl.2012.02.005

Casnati A.; Perrone A.; MazzeoP.P.; Bacchi A.; Mancuso R.; Gabriele B.; Maggi R.; Maestri G.; Motti E.; Stirling A.; Della Ca N. (2019). Synthesis of Imidazolidin-2-ones and Imidazol-2-ones via Base-Catalyzed Intramolecular Hydroamidation of Propargylic Ureas under Ambient Conditions. J. Org. Chem., 84(6),3477–3490. https://doi.org/10.1021/acs.joc.9b00064

Correia H.D.; Cicolani R.S.; Moral R.F.; Demets G.J.F. (2016). Easy Synthesis of trans-4,5-Dihidroxy-2-imidzolidinone and 2,4-Dmethylglycoluril. Synthesis, 48, 210–212. https://doi.org/10.1055/s-0035-1560831

Saloutina, L.V.; Zapevalov, A.Ya.; Slepukhin, P.A.; Kodess, M.I.; Saloutin, V.I.; Chupakhin, O.N. (2014). Synthesis of fluorine-containing imidazolidin-2-ones, glycolurils, and hydantoins based on perfluorodiacetyl and ureas. Chem. Heterocycl. Compound, 50, 958–967. https://doi.org/10.1007/s10593-014-1550-z

Mannick A-D.; Aubert S.; Yalcouye B.; Prange T.; Berhal F.; Prestat G. (2018). Access to Functionalized Imidazolidin‐2‐one Derivatives by Iron‐Catalyzed Oxyamination of Alkene. Chem. Eur J., 24(44), 11485–11492. https://doi.org/10.1002/chem.201802190

Ammar, Y.A.; El-Sharief, M.A.M. Sh.; Ghorab, M.M.; Mohamed, Y.A.; Ragab, A.; Abbas, S.Y. (2016). New imidazolidineiminothione, imidazolidin-2-one and imidazoquinoxaline derivatives: synthesis and evaluation of antibacterial and antifungal activities. Curr. Org. Synth., 13(3), 466–475. https://doi.org/10.2174/1570179412666150817221755

Shtamburg, V.G.; Shtamburg, V.V.; Anishchenko, A.A.; Shishkina, S.V.; Mazepa, A.V.; Konovalova, I.S. (2020). Interactions of Ninhydrin with N-Hydroxyurea and N-Alkoxyureas in Acetic Acid. Eur. Chem. Bull., 9(5), 125–131. http:/dx.doi.org/10.17628/ecb.2020.9.125-131 16.

Shtamburg, V.G.; Shtamburg, V.V.; Anishchenko, A.A.; Mazepa, A.V.; Rusanov, E.B. (2021). Interaction of ninhydrin with N-alkoxy-N’-arylureas and N-alkoxy-n’-alkylureas. 1-Alkoxy-3-aryl(alkyl)-3a,8a-dihydroxy-1,3,3a,8a-tetrahydroindeno[1,2-d]imidazole-2,8-diones: synthesis and structure. J. Mol. Struct., in press.

Shtamburg, V.G.; Shtamburg, V.V.; Anishchenko, A.A.; Shishkina, S.V.; Mazepa, A.V.; Konovalova, I.S. (2019). 3-Alkoxy-1,5-diaryl-4,5-dihydroxyimidazolidin-2-ones and 3-Alkoxy-1-alkyl-5-aryl-4,5-dihydroxyimidazolidin-2-ones: Synthesis and Structure. Eur. Chem. Bull., 8(9), 282–290. http:/dx.doi.org./10.17628/ecb.2019.8.282-290

Sheldrick G.M. (2008). A short history of SHELX, Acta Cryst., Sect. A., A64, 112–122. https://doi.org/10.1107/S0108767307043930

Shishkin, O.V.; Shtamburg, V. G., Zubatyuk R. I.; Olefir, D.A., Tsygankov, A.V., Prosyanik, A.V., Mazepa, A.V., Kostyanovsky, R.G. (2009). Chiral Ureas with Two Electronegative Substituens at 1-N and Unusual Case of Coexisting a Pyramidal and Almost Planar 1-N in The Same Crystal, Chirality, 21(7), 642–647. https://doi.org/10.1002/chir.20668

Shtamburg, V.G., Kostyanovsky, R.G., Tsygankov, A.V., Shtamburg, V.V., Shishkin, O.V., Zubatyuk, R.I., Mazepa, A.V., Kravchenko, S.V. (2015). Geminal Systems. Communication 64. N-Alkoxy-N-chloroureas and N,N-Dialkoxyureas, Russ. Chem. Bulletin. Intern. Ed., 64(1), 62–75. https://doi.org/10.1007/s11172-015-0822-9

Kostyanovsky, R.G.; Shtamburg, V.G.; Shishkin, O.V.; Zubatyuk R.I.; Shtamburg, V.V.; Anishchenko, A.A.; Mazepa, A.V. (2010). Pyramidal nitrogen in the crystal of N-[(benzoyl)-(hydroxy)methyl]-N-benzyloxy-N’-(2-bromophenyl)urea. Mendeleev Commun., 20, 167–169. https://doi.org./10.1016/j.men.com.2010.05.015

Burgi, H.-B., Dunitz, J.D. (1994). Structure correlation. VCH. Weinheim, 2, 741−784.

https://doi.org./10.1107/S0108768195009931

Agapiou, K.; Cauble,D.F.; Krische, M.J. (2004). Copper-Catalyzed Tandem Conjugate Addition–Electrophilic Trapping: Ketones, Esters, and Nitriles as Terminal Electrophiles, J. Am. Chem. Soc., 126(14), 4528–4529. https://doi.org/ 10.1021/ja030603l.

Deng, Qing-Hai; Wadepohl, H.; Gade, L.H. (2012). Highly Enantioselective Copper-Catalyzed Alkylation of β-Ketoesters and Subsequent Cyclization to Spirolactones/Bi-spirolactones, J. Am. Chem. Soc., 134(6), 2946–2949. https://doi.org/ 10.1021/ja211859w.

Downloads

Published

2021-07-20