SOLVENT-FREE DEHYDRATION OF SORBITOL TO ISOSORBIDE CATALYZED BY SULFONIC ACID RESINS

Authors

  • Olena I. Inshyna Institute for Sorption and Problems of Endoecology The National Academy of Sciences of Ukraine, Ukraine
  • Artur M. Mylin Institute for Sorption and Problems of Endoecology of National Academy of Sciences of Ukraine, Ukraine https://orcid.org/0000-0002-7251-3935
  • Volodymyr V. Brei Institute for Sorption and Problems of Endoecology of National Academy of Sciences of Ukraine, Ukraine

DOI:

https://doi.org/10.15421/jchemtech.v29i3.231771

Keywords:

biomass, heterogeneous catalysis, isosorbide, polymers, sorbitol dehydration

Abstract

The double cyclodehydration of D‑sorbitol to isosorbide on Amberlyst 15 and KU‑2‑8 sulfonic acid resins at 120‑140 оC in the batch reactor under vacuum (150‑170 mbar) without solvent was studied. It was found that the studied catalysts provide 78‑88 % isosorbide yield with a complete conversion of sorbitol at 140 оC for 3 h. More stable Amberlyst 15 produces 10 g of isosorbide per 1 g of catalyst for 3 h at 130 оC. After 5 experiments for 3 h at 125 oC acid site concentration on Amberlyst 15 surface reduced by only 4 %, sorbitol conversion and yield of products remain almost unchanged. KU‑2‑8 shows high initial catalytic activity, but after only one run this resin loses 40 % of sulfonic groups.

Author Biography

Olena I. Inshyna, Institute for Sorption and Problems of Endoecology The National Academy of Sciences of Ukraine

Інститут сорбції та проблем ендоекології НАН України

References

Werpy T., Petersen G., Top Value Added Chemicals from Biomass, Eds. U.S. Department of Energy (DOE) report: DOE/GO-102004-1992, 2004.

Bozell J. J., Petersen G. R. (2010). Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited. Green Chem., 12(4), 539-554. https://doi.org/10.1039/B922014C

“Global Sorbitol Market to Reach 2.83 Million Metric Tons by 2025, Impelled by Growing Demand for Low Calorie Products", can be found under https://www.imarcgroup.com/global-sorbitol-market, 2020.

Fenouillot F., Rousseau A., Colomines G., Saint-Loup R., Pascault J. P. (2010). Polymers from renewable 1,4:3,6-dianhydrohexitols (isosorbide, isomannide and isoidide): A review. Prog. Polym. Sci., 35(5), 578-622. https://doi.org/10.1016/j.progpolymsci.2009.10.001

Kobayashi H., Fukuoka A. (2013). Synthesis and utilisation of sugar compounds derived from lignocellulosic biomass. Green Chemistry, 15(7), 1740-1763. https://doi.org/10.1039/C3GC00060E

Aricò F. (2020). Isosorbide as biobased platform chemical: Recent advances. Curr. Opin. Green Sustain. Chem, 21, 82-88. https://doi.org/10.1016/j.cogsc.2020.02.002

Park S. A., Choi J., Ju S., Jegal J., Lee K. M., Hwang S. Y., Oh D. X., Park J. (2017). Copolycarbonates of bio-based rigid isosorbide and flexible 1,4 cyclohexanedimethanol: Merits over bisphenol-A based polycarbonates. Polymer, 116, 153-159. https://doi.org/10.1016/j.polymer.2017.03.077

Yang H. S., Cho S., Lee M., Eom Y., Chae H. G., Park S. A., Jang M., Oh D. X., Hwang S. Y., Park J. (2021). Preparation of sustainable fibers from isosorbide: Merits over bisphenol-A based polysulfone. Mater. Des, 198, 109284. https://doi.org/10.1016/j.matdes.2020.109284

Isosorbide Market for PEIT, Polycarbonate, Polyurethane, Polyesters Polyisosorbide Succinate, Isosorbide Diesters and Other Applications: Global Industry Perspective, Comprehensive Analysis and Forecast, 2014 – 2020, can be found under https://www.expertmarketresearch.com/reports/isosorbide-market, 2018.

Isosorbide Market Size, Share & Trends Analysis Report By Application (Polycarbonate, PEIT, Polyurethane), By End Use (Resins & Polymers, Additives), By Region, And Segment Forecasts, 2019–2025, https://www.grandviewresearch.com/industry-analysis/isosorbideindustry, 2019.

Andrews M. A., Bhatia K. K., Fagan P. J. (EI Du Pont de Nemours and Co), US 6689892, 2004;

Bhatia K. K. (EI Du Pont de Nemours and Co), US 6864378, 2005.

Flèche G., Huchette M. (1986). Isosorbide. Preparation, properties and chemistry. Starch‐Stärke, 38(1), 26-30. https://doi.org/10.1002/star.19860380107

Khan N. A., Mishra D. K., Ahmed I., Yoon J. W., Hwang J. S., Jhung S. H. (2013). Liquid-phase dehydration of sorbitol to isosorbide using sulfated zirconia as a solid acid catalyst. Appl. Catal. A, 452, 34-38. https://doi.org/10.1016/j.apcata.2012.11.022

Kamimura A., Murata K., Tanaka Y., Okagawa T., Matsumoto H., Kaiso K., Yoshimoto M. (2014). Rapid conversion of sorbitol to isosorbide in hydrophobic ionic liquids under microwave irradiation. ChemSusChem, 7(12), 3257-3259. https://doi.org/10.1002/cssc.201402655

Shi J., Shan Y., Tian Y., Wan Y., Zheng Y., Feng Y. (2016). Hydrophilic sulfonic acid-functionalized micro-bead silica for dehydration of sorbitol to isosorbide. RSC Adv, 6(16), 13514-13521. https://doi.org/10.1039/C5RA27510E

Cubo A., Iglesias J., Morales G., Melero J. A., Moreno J., Sánchez-Vázquez R. (2017). Dehydration of sorbitol to isosorbide in melted phase with propyl-sulfonic functionalized SBA-15: Influence of catalyst hydrophobization. Appl. Catal. A., 531, 151-160. https://doi.org/10.1016/j.apcata.2016.10.029

Rusu O. A., Hoelderich W. F., Wyart H., Ibert M. (2015). Metal phosphate catalyzed dehydration of sorbitol under hydrothermal conditions. Appl. Catal. B., 176, 139-149. https://doi.org/10.1016/j.apcatb.2015.03.033

Kobayashi H., Yokoyama H., Feng B., Fukuoka A. (2015). Dehydration of sorbitol to isosorbide over H-beta zeolites with high Si/Al ratios. Green chem., 17(5), 2732-2735. https://doi.org/10.1039/C5GC00319A

Otomo R., Yokoi T., Tatsumi T. (2015). Synthesis of isosorbide from sorbitol in water over high-silica aluminosilicate zeolites. Appl. Catal. A., 505, 28-35. https://doi.org/10.1016/j.apcata.2015.07.034

Jeong S., Jeon K. J., Park Y. K., Kim B. J., Chung K. H., Jung S. C. (2020). Catalytic properties of microporous zeolite catalysts in synthesis of isosorbide from sorbitol by dehydration. Catalysts, 10(2), 148. https://doi.org/10.3390/catal10020148

Caiti M., Tarantino G., Hammond C. (2020). Developing a continuous process for isosorbide production from renewable sources. ChemCatChem, 12(24), 6393-6400. 10.1002/cctc.202001278.

Zhang Y., Chen T., Zhang G., Wang G., Zhang H (2019). Efficient production of isosorbide from sorbitol dehydration over mesoporous carbon-based acid catalyst. Appl. Catal. A., 575, 38-47. https://doi.org/10.1016/j.apcata.2019.01.014

Zhang Y., Chen T., Zhang G., Wang G., Zhang H. (2020). Sorbitol Cyclodehydration to Isosorbide Catalyzed by Acidic Carbon Obtained from Reaction By‐Product. ChemSelect, 5(5), 1751-1759. https://doi.org/10.1002/slct.201904251

Zhang Y., Li C., Du Z., Chen X., Liang C. (2018). Dehydration of sorbitol into isosorbide over silver-exchanged phosphotungstic acid catalysts. Mol. Catal., 458, 19-24. https://doi.org/10.1016/j.mcat.2018.08.005

Khan N. A., Mishra D. K., Hwang J. S., Kwak Y. W., Jhung S. H. (2011). Liquid-phase dehydration of sorbitol under microwave irradiation in the presence of acidic resin catalysts. Res. Chem. Intermed, 37(9), 1231-1238. https://doi.org/10.1007/s11164-011-0389-5

Zhang J., Wang L., Liu F., Meng X., Mao J., Xiao F. S. (2015). Enhanced catalytic performance in dehydration of sorbitol to isosorbide over a superhydrophobic mesoporous acid catalyst. Catal. Today, 242, 249-254. https://doi.org/10.1016/j.cattod.2014.04.017

Ginés-Molina M. J., Moreno-Tost R., Santamaría-González J., Maireles-Torres P. (2017). Dehydration of sorbitol to isosorbide over sulfonic acid resins under solvent-free conditions. Appl. Catal. A., 537, 66-73. https://doi.org/10.1016/j.apcata.2017.03.006

Fraile J. M., Saavedra C. J. (2017). Synthesis of isosorbide esters from sorbitol with heterogeneous catalysts. ChemSelect, 2(3), 1013-1018. https://doi.org/10.1002/slct.201601866

Yuan D., Zhao N., Wang Y., Xuan K., Li F., Pu Y., Wang F., Li L., Xiao F. (2019). Dehydration of sorbitol to isosorbide over hydrophobic polymer-based solid acid. Appl. Catal. B., 240, 182-192. https://doi.org/10.1016/j.apcatb.2018.08.036

Kamaruzaman M. R., Jiang X. X., De Hu X., Chin S. Y. (2020). High yield of isosorbide production from sorbitol dehydration catalysed by Amberlyst 36 under mild condition. Chem. Eng. J., 388, 124186. https://doi.org/10.1016/j.cej.2020.124186

Yabushita M., Kobayashi H., Shrotri A., Hara K., Ito S., Fukuoka A. (2015). Sulfuric acid-catalyzed dehydration of sorbitol: mechanistic study on preferential formation of 1,4-sorbitan. Bull. Chem. Soc. Jpn, 88(7), 996-1002. https://doi.org/10.1246/bcsj.20150080

Dussenne C., Delaunay T., Wiatz V., Wyart H., Suisse I., Sauthier M. (2017). Synthesis of isosorbide: an overview of challenging reactions. Green Chem., 19(22), 5332-5344. https://doi.org/10.1039/C7GC01912B

Delbecq F., Khodadadi M. R., Padron D. R., Varma R., Len C. (2020). Isosorbide: Recent advances in catalytic production. Mol. Catal., 482, 110648. https://doi.org/10.1016/j.mcat.2019.110648

Siril P. F., Cross H. E., Brown D. R. (2008). New polystyrene sulfonic acid resin catalysts with enhanced acidic and catalytic properties. J. Mol. Catal. A: Chem, 279(1), 63-68. https://doi.org/10.1016/j.molcata.2007.10.001

Moore K. M., Sanborn A. J., Bloom P. (Archer Daniels Midland Co), US 7439352, 2008.

K. Tanabe. (1970). Solid Acids and Bases: Their Catalytic Properties. Academic Press: New York, London.

Downloads

Published

2021-10-27