SOLVENT-FREE DEHYDRATION OF SORBITOL TO ISOSORBIDE CATALYZED BY SULFONIC ACID RESINS
DOI:
https://doi.org/10.15421/jchemtech.v29i3.231771Keywords:
biomass, heterogeneous catalysis, isosorbide, polymers, sorbitol dehydrationAbstract
The double cyclodehydration of D‑sorbitol to isosorbide on Amberlyst 15 and KU‑2‑8 sulfonic acid resins at 120‑140 оC in the batch reactor under vacuum (150‑170 mbar) without solvent was studied. It was found that the studied catalysts provide 78‑88 % isosorbide yield with a complete conversion of sorbitol at 140 оC for 3 h. More stable Amberlyst 15 produces 10 g of isosorbide per 1 g of catalyst for 3 h at 130 оC. After 5 experiments for 3 h at 125 oC acid site concentration on Amberlyst 15 surface reduced by only 4 %, sorbitol conversion and yield of products remain almost unchanged. KU‑2‑8 shows high initial catalytic activity, but after only one run this resin loses 40 % of sulfonic groups.
References
Werpy T., Petersen G., Top Value Added Chemicals from Biomass, Eds. U.S. Department of Energy (DOE) report: DOE/GO-102004-1992, 2004.
Bozell J. J., Petersen G. R. (2010). Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited. Green Chem., 12(4), 539-554. https://doi.org/10.1039/B922014C
“Global Sorbitol Market to Reach 2.83 Million Metric Tons by 2025, Impelled by Growing Demand for Low Calorie Products", can be found under https://www.imarcgroup.com/global-sorbitol-market, 2020.
Fenouillot F., Rousseau A., Colomines G., Saint-Loup R., Pascault J. P. (2010). Polymers from renewable 1,4:3,6-dianhydrohexitols (isosorbide, isomannide and isoidide): A review. Prog. Polym. Sci., 35(5), 578-622. https://doi.org/10.1016/j.progpolymsci.2009.10.001
Kobayashi H., Fukuoka A. (2013). Synthesis and utilisation of sugar compounds derived from lignocellulosic biomass. Green Chemistry, 15(7), 1740-1763. https://doi.org/10.1039/C3GC00060E
Aricò F. (2020). Isosorbide as biobased platform chemical: Recent advances. Curr. Opin. Green Sustain. Chem, 21, 82-88. https://doi.org/10.1016/j.cogsc.2020.02.002
Park S. A., Choi J., Ju S., Jegal J., Lee K. M., Hwang S. Y., Oh D. X., Park J. (2017). Copolycarbonates of bio-based rigid isosorbide and flexible 1,4 cyclohexanedimethanol: Merits over bisphenol-A based polycarbonates. Polymer, 116, 153-159. https://doi.org/10.1016/j.polymer.2017.03.077
Yang H. S., Cho S., Lee M., Eom Y., Chae H. G., Park S. A., Jang M., Oh D. X., Hwang S. Y., Park J. (2021). Preparation of sustainable fibers from isosorbide: Merits over bisphenol-A based polysulfone. Mater. Des, 198, 109284. https://doi.org/10.1016/j.matdes.2020.109284
Isosorbide Market for PEIT, Polycarbonate, Polyurethane, Polyesters Polyisosorbide Succinate, Isosorbide Diesters and Other Applications: Global Industry Perspective, Comprehensive Analysis and Forecast, 2014 – 2020, can be found under https://www.expertmarketresearch.com/reports/isosorbide-market, 2018.
Isosorbide Market Size, Share & Trends Analysis Report By Application (Polycarbonate, PEIT, Polyurethane), By End Use (Resins & Polymers, Additives), By Region, And Segment Forecasts, 2019–2025, https://www.grandviewresearch.com/industry-analysis/isosorbideindustry, 2019.
Andrews M. A., Bhatia K. K., Fagan P. J. (EI Du Pont de Nemours and Co), US 6689892, 2004;
Bhatia K. K. (EI Du Pont de Nemours and Co), US 6864378, 2005.
Flèche G., Huchette M. (1986). Isosorbide. Preparation, properties and chemistry. Starch‐Stärke, 38(1), 26-30. https://doi.org/10.1002/star.19860380107
Khan N. A., Mishra D. K., Ahmed I., Yoon J. W., Hwang J. S., Jhung S. H. (2013). Liquid-phase dehydration of sorbitol to isosorbide using sulfated zirconia as a solid acid catalyst. Appl. Catal. A, 452, 34-38. https://doi.org/10.1016/j.apcata.2012.11.022
Kamimura A., Murata K., Tanaka Y., Okagawa T., Matsumoto H., Kaiso K., Yoshimoto M. (2014). Rapid conversion of sorbitol to isosorbide in hydrophobic ionic liquids under microwave irradiation. ChemSusChem, 7(12), 3257-3259. https://doi.org/10.1002/cssc.201402655
Shi J., Shan Y., Tian Y., Wan Y., Zheng Y., Feng Y. (2016). Hydrophilic sulfonic acid-functionalized micro-bead silica for dehydration of sorbitol to isosorbide. RSC Adv, 6(16), 13514-13521. https://doi.org/10.1039/C5RA27510E
Cubo A., Iglesias J., Morales G., Melero J. A., Moreno J., Sánchez-Vázquez R. (2017). Dehydration of sorbitol to isosorbide in melted phase with propyl-sulfonic functionalized SBA-15: Influence of catalyst hydrophobization. Appl. Catal. A., 531, 151-160. https://doi.org/10.1016/j.apcata.2016.10.029
Rusu O. A., Hoelderich W. F., Wyart H., Ibert M. (2015). Metal phosphate catalyzed dehydration of sorbitol under hydrothermal conditions. Appl. Catal. B., 176, 139-149. https://doi.org/10.1016/j.apcatb.2015.03.033
Kobayashi H., Yokoyama H., Feng B., Fukuoka A. (2015). Dehydration of sorbitol to isosorbide over H-beta zeolites with high Si/Al ratios. Green chem., 17(5), 2732-2735. https://doi.org/10.1039/C5GC00319A
Otomo R., Yokoi T., Tatsumi T. (2015). Synthesis of isosorbide from sorbitol in water over high-silica aluminosilicate zeolites. Appl. Catal. A., 505, 28-35. https://doi.org/10.1016/j.apcata.2015.07.034
Jeong S., Jeon K. J., Park Y. K., Kim B. J., Chung K. H., Jung S. C. (2020). Catalytic properties of microporous zeolite catalysts in synthesis of isosorbide from sorbitol by dehydration. Catalysts, 10(2), 148. https://doi.org/10.3390/catal10020148
Caiti M., Tarantino G., Hammond C. (2020). Developing a continuous process for isosorbide production from renewable sources. ChemCatChem, 12(24), 6393-6400. 10.1002/cctc.202001278.
Zhang Y., Chen T., Zhang G., Wang G., Zhang H (2019). Efficient production of isosorbide from sorbitol dehydration over mesoporous carbon-based acid catalyst. Appl. Catal. A., 575, 38-47. https://doi.org/10.1016/j.apcata.2019.01.014
Zhang Y., Chen T., Zhang G., Wang G., Zhang H. (2020). Sorbitol Cyclodehydration to Isosorbide Catalyzed by Acidic Carbon Obtained from Reaction By‐Product. ChemSelect, 5(5), 1751-1759. https://doi.org/10.1002/slct.201904251
Zhang Y., Li C., Du Z., Chen X., Liang C. (2018). Dehydration of sorbitol into isosorbide over silver-exchanged phosphotungstic acid catalysts. Mol. Catal., 458, 19-24. https://doi.org/10.1016/j.mcat.2018.08.005
Khan N. A., Mishra D. K., Hwang J. S., Kwak Y. W., Jhung S. H. (2011). Liquid-phase dehydration of sorbitol under microwave irradiation in the presence of acidic resin catalysts. Res. Chem. Intermed, 37(9), 1231-1238. https://doi.org/10.1007/s11164-011-0389-5
Zhang J., Wang L., Liu F., Meng X., Mao J., Xiao F. S. (2015). Enhanced catalytic performance in dehydration of sorbitol to isosorbide over a superhydrophobic mesoporous acid catalyst. Catal. Today, 242, 249-254. https://doi.org/10.1016/j.cattod.2014.04.017
Ginés-Molina M. J., Moreno-Tost R., Santamaría-González J., Maireles-Torres P. (2017). Dehydration of sorbitol to isosorbide over sulfonic acid resins under solvent-free conditions. Appl. Catal. A., 537, 66-73. https://doi.org/10.1016/j.apcata.2017.03.006
Fraile J. M., Saavedra C. J. (2017). Synthesis of isosorbide esters from sorbitol with heterogeneous catalysts. ChemSelect, 2(3), 1013-1018. https://doi.org/10.1002/slct.201601866
Yuan D., Zhao N., Wang Y., Xuan K., Li F., Pu Y., Wang F., Li L., Xiao F. (2019). Dehydration of sorbitol to isosorbide over hydrophobic polymer-based solid acid. Appl. Catal. B., 240, 182-192. https://doi.org/10.1016/j.apcatb.2018.08.036
Kamaruzaman M. R., Jiang X. X., De Hu X., Chin S. Y. (2020). High yield of isosorbide production from sorbitol dehydration catalysed by Amberlyst 36 under mild condition. Chem. Eng. J., 388, 124186. https://doi.org/10.1016/j.cej.2020.124186
Yabushita M., Kobayashi H., Shrotri A., Hara K., Ito S., Fukuoka A. (2015). Sulfuric acid-catalyzed dehydration of sorbitol: mechanistic study on preferential formation of 1,4-sorbitan. Bull. Chem. Soc. Jpn, 88(7), 996-1002. https://doi.org/10.1246/bcsj.20150080
Dussenne C., Delaunay T., Wiatz V., Wyart H., Suisse I., Sauthier M. (2017). Synthesis of isosorbide: an overview of challenging reactions. Green Chem., 19(22), 5332-5344. https://doi.org/10.1039/C7GC01912B
Delbecq F., Khodadadi M. R., Padron D. R., Varma R., Len C. (2020). Isosorbide: Recent advances in catalytic production. Mol. Catal., 482, 110648. https://doi.org/10.1016/j.mcat.2019.110648
Siril P. F., Cross H. E., Brown D. R. (2008). New polystyrene sulfonic acid resin catalysts with enhanced acidic and catalytic properties. J. Mol. Catal. A: Chem, 279(1), 63-68. https://doi.org/10.1016/j.molcata.2007.10.001
Moore K. M., Sanborn A. J., Bloom P. (Archer Daniels Midland Co), US 7439352, 2008.
K. Tanabe. (1970). Solid Acids and Bases: Their Catalytic Properties. Academic Press: New York, London.
Downloads
Published
Issue
Section
License
Copyright (c) 2021 Днипровский национальный университет имени Олеся Гончара
This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors reserve the right of attribution for the submitted manuscript, while transferring to the Journal the right to publish the article under the Creative Commons Attribution License. This license allows free distribution of the published work under the condition of proper attribution of the original authors and the initial publication source (i.e. the Journal)
- Authors have the right to enter into separate agreements for additional non-exclusive distribution of the work in the form it was published in the Journal (such as publishing the article on the institutional website or as a part of a monograph), provided the original publication in this Journal is properly referenced
- The Journal allows and encourages online publication of the manuscripts (such as on personal web pages), even when such a manuscript is still under editorial consideration, since it allows for a productive scientific discussion and better citation dynamics (see The Effect of Open Access).