• Olena I. Inshyna Institute for Sorption and Problems of Endoecology The National Academy of Sciences of Ukraine, Ukraine
  • Artur M. Mylin Institute for Sorption and Problems of Endoecology of National Academy of Sciences of Ukraine, Ukraine
  • Volodymyr V. Brei Institute for Sorption and Problems of Endoecology of National Academy of Sciences of Ukraine, Ukraine



biomass, heterogeneous catalysis, isosorbide, polymers, sorbitol dehydration


The double cyclodehydration of D‑sorbitol to isosorbide on Amberlyst 15 and KU‑2‑8 sulfonic acid resins at 120‑140 оC in the batch reactor under vacuum (150‑170 mbar) without solvent was studied. It was found that the studied catalysts provide 78‑88 % isosorbide yield with a complete conversion of sorbitol at 140 оC for 3 h. More stable Amberlyst 15 produces 10 g of isosorbide per 1 g of catalyst for 3 h at 130 оC. After 5 experiments for 3 h at 125 oC acid site concentration on Amberlyst 15 surface reduced by only 4 %, sorbitol conversion and yield of products remain almost unchanged. KU‑2‑8 shows high initial catalytic activity, but after only one run this resin loses 40 % of sulfonic groups.

Author Biography

Olena I. Inshyna, Institute for Sorption and Problems of Endoecology The National Academy of Sciences of Ukraine

Інститут сорбції та проблем ендоекології НАН України


Werpy T., Petersen G., Top Value Added Chemicals from Biomass, Eds. U.S. Department of Energy (DOE) report: DOE/GO-102004-1992, 2004.

Bozell J. J., Petersen G. R. (2010). Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited. Green Chem., 12(4), 539-554.

“Global Sorbitol Market to Reach 2.83 Million Metric Tons by 2025, Impelled by Growing Demand for Low Calorie Products", can be found under, 2020.

Fenouillot F., Rousseau A., Colomines G., Saint-Loup R., Pascault J. P. (2010). Polymers from renewable 1,4:3,6-dianhydrohexitols (isosorbide, isomannide and isoidide): A review. Prog. Polym. Sci., 35(5), 578-622.

Kobayashi H., Fukuoka A. (2013). Synthesis and utilisation of sugar compounds derived from lignocellulosic biomass. Green Chemistry, 15(7), 1740-1763.

Aricò F. (2020). Isosorbide as biobased platform chemical: Recent advances. Curr. Opin. Green Sustain. Chem, 21, 82-88.

Park S. A., Choi J., Ju S., Jegal J., Lee K. M., Hwang S. Y., Oh D. X., Park J. (2017). Copolycarbonates of bio-based rigid isosorbide and flexible 1,4 cyclohexanedimethanol: Merits over bisphenol-A based polycarbonates. Polymer, 116, 153-159.

Yang H. S., Cho S., Lee M., Eom Y., Chae H. G., Park S. A., Jang M., Oh D. X., Hwang S. Y., Park J. (2021). Preparation of sustainable fibers from isosorbide: Merits over bisphenol-A based polysulfone. Mater. Des, 198, 109284.

Isosorbide Market for PEIT, Polycarbonate, Polyurethane, Polyesters Polyisosorbide Succinate, Isosorbide Diesters and Other Applications: Global Industry Perspective, Comprehensive Analysis and Forecast, 2014 – 2020, can be found under, 2018.

Isosorbide Market Size, Share & Trends Analysis Report By Application (Polycarbonate, PEIT, Polyurethane), By End Use (Resins & Polymers, Additives), By Region, And Segment Forecasts, 2019–2025,, 2019.

Andrews M. A., Bhatia K. K., Fagan P. J. (EI Du Pont de Nemours and Co), US 6689892, 2004;

Bhatia K. K. (EI Du Pont de Nemours and Co), US 6864378, 2005.

Flèche G., Huchette M. (1986). Isosorbide. Preparation, properties and chemistry. Starch‐Stärke, 38(1), 26-30.

Khan N. A., Mishra D. K., Ahmed I., Yoon J. W., Hwang J. S., Jhung S. H. (2013). Liquid-phase dehydration of sorbitol to isosorbide using sulfated zirconia as a solid acid catalyst. Appl. Catal. A, 452, 34-38.

Kamimura A., Murata K., Tanaka Y., Okagawa T., Matsumoto H., Kaiso K., Yoshimoto M. (2014). Rapid conversion of sorbitol to isosorbide in hydrophobic ionic liquids under microwave irradiation. ChemSusChem, 7(12), 3257-3259.

Shi J., Shan Y., Tian Y., Wan Y., Zheng Y., Feng Y. (2016). Hydrophilic sulfonic acid-functionalized micro-bead silica for dehydration of sorbitol to isosorbide. RSC Adv, 6(16), 13514-13521.

Cubo A., Iglesias J., Morales G., Melero J. A., Moreno J., Sánchez-Vázquez R. (2017). Dehydration of sorbitol to isosorbide in melted phase with propyl-sulfonic functionalized SBA-15: Influence of catalyst hydrophobization. Appl. Catal. A., 531, 151-160.

Rusu O. A., Hoelderich W. F., Wyart H., Ibert M. (2015). Metal phosphate catalyzed dehydration of sorbitol under hydrothermal conditions. Appl. Catal. B., 176, 139-149.

Kobayashi H., Yokoyama H., Feng B., Fukuoka A. (2015). Dehydration of sorbitol to isosorbide over H-beta zeolites with high Si/Al ratios. Green chem., 17(5), 2732-2735.

Otomo R., Yokoi T., Tatsumi T. (2015). Synthesis of isosorbide from sorbitol in water over high-silica aluminosilicate zeolites. Appl. Catal. A., 505, 28-35.

Jeong S., Jeon K. J., Park Y. K., Kim B. J., Chung K. H., Jung S. C. (2020). Catalytic properties of microporous zeolite catalysts in synthesis of isosorbide from sorbitol by dehydration. Catalysts, 10(2), 148.

Caiti M., Tarantino G., Hammond C. (2020). Developing a continuous process for isosorbide production from renewable sources. ChemCatChem, 12(24), 6393-6400. 10.1002/cctc.202001278.

Zhang Y., Chen T., Zhang G., Wang G., Zhang H (2019). Efficient production of isosorbide from sorbitol dehydration over mesoporous carbon-based acid catalyst. Appl. Catal. A., 575, 38-47.

Zhang Y., Chen T., Zhang G., Wang G., Zhang H. (2020). Sorbitol Cyclodehydration to Isosorbide Catalyzed by Acidic Carbon Obtained from Reaction By‐Product. ChemSelect, 5(5), 1751-1759.

Zhang Y., Li C., Du Z., Chen X., Liang C. (2018). Dehydration of sorbitol into isosorbide over silver-exchanged phosphotungstic acid catalysts. Mol. Catal., 458, 19-24.

Khan N. A., Mishra D. K., Hwang J. S., Kwak Y. W., Jhung S. H. (2011). Liquid-phase dehydration of sorbitol under microwave irradiation in the presence of acidic resin catalysts. Res. Chem. Intermed, 37(9), 1231-1238.

Zhang J., Wang L., Liu F., Meng X., Mao J., Xiao F. S. (2015). Enhanced catalytic performance in dehydration of sorbitol to isosorbide over a superhydrophobic mesoporous acid catalyst. Catal. Today, 242, 249-254.

Ginés-Molina M. J., Moreno-Tost R., Santamaría-González J., Maireles-Torres P. (2017). Dehydration of sorbitol to isosorbide over sulfonic acid resins under solvent-free conditions. Appl. Catal. A., 537, 66-73.

Fraile J. M., Saavedra C. J. (2017). Synthesis of isosorbide esters from sorbitol with heterogeneous catalysts. ChemSelect, 2(3), 1013-1018.

Yuan D., Zhao N., Wang Y., Xuan K., Li F., Pu Y., Wang F., Li L., Xiao F. (2019). Dehydration of sorbitol to isosorbide over hydrophobic polymer-based solid acid. Appl. Catal. B., 240, 182-192.

Kamaruzaman M. R., Jiang X. X., De Hu X., Chin S. Y. (2020). High yield of isosorbide production from sorbitol dehydration catalysed by Amberlyst 36 under mild condition. Chem. Eng. J., 388, 124186.

Yabushita M., Kobayashi H., Shrotri A., Hara K., Ito S., Fukuoka A. (2015). Sulfuric acid-catalyzed dehydration of sorbitol: mechanistic study on preferential formation of 1,4-sorbitan. Bull. Chem. Soc. Jpn, 88(7), 996-1002.

Dussenne C., Delaunay T., Wiatz V., Wyart H., Suisse I., Sauthier M. (2017). Synthesis of isosorbide: an overview of challenging reactions. Green Chem., 19(22), 5332-5344.

Delbecq F., Khodadadi M. R., Padron D. R., Varma R., Len C. (2020). Isosorbide: Recent advances in catalytic production. Mol. Catal., 482, 110648.

Siril P. F., Cross H. E., Brown D. R. (2008). New polystyrene sulfonic acid resin catalysts with enhanced acidic and catalytic properties. J. Mol. Catal. A: Chem, 279(1), 63-68.

Moore K. M., Sanborn A. J., Bloom P. (Archer Daniels Midland Co), US 7439352, 2008.

K. Tanabe. (1970). Solid Acids and Bases: Their Catalytic Properties. Academic Press: New York, London.