• Svetlana D. Kopteva Oles HoncharDnepropetrovsk National University, Dnepropetrovsk, Ukraine, Ukraine
  • Iryna O. Borysenko Oles Honchar Dnipro National University, Ukraine
  • Sergiy I.Okovytyy Oles Honchar Dnipro National University, Ukraine



azo coupling; azo dyes; azo-hydrazone tautomerism; 1-((4-nitrophenyl)diazenyl)-N-phenylnaphthalen-2-amine; 1-((4-nitrophenyl)diazenyl)-N-tolylnaphthalen-2-amine; NMR, basis set; B3LYP; CSGT; GIAO, PBE1PBE/STO##-3Gel.


The azo coupling reaction of  isomeric N-tolyl-1-naphthylamines and N-tolyl-2-naphthylamines has been investigated.  The results of the theoretical investigation of tautomeric, conformational properties and 1H NMR chemical shifts for 1-((4-nitrophenyl)diazenyl)-N-phenylnaphthalen-2-amine, 1-((4-nitrophenyl)diazenyl)-N-p-tolylnaphthalen-2-amine and 4-((4-nitrophenyl)diazenyl)-N-phenylnaphthalen-1-amine are reported. The calculations were performed at DFT level (B3LYP) using 6-31G_JSKE basis function set physically adapted to calculate the magnetic properties by CSGT and GIAO methods. The influence of the solvent used to record the NMR spectra (CDCl3) was accounted for by the SMD method. The stability of possible conformers and tautomeric forms was established on the basis of the calculated Gibbs free energy values in the M06-2X/6-311++G** approximation.  The occupancy of each conformation was calculated by the Boltzmann method. The conformational properties of azo compounds have been studied by scanning potential energy surfaces. The data from the theoretical calculations of the absorption spectra of the azo dye 1 - (4-nitrophenylazo)-N-phenylnaphthalen-2-amine by PBE1PBE/STO#-3Gel method are presented. The data of the theoretical study of the spectral characteristics of the studied azo dyes correlate well with the obtained experimental data and confirm the preferential existence of N-Arylnaphthalen-2-amine azo compounds in the form of azo-tautomer with intramolecular hydrogen bonding


Karapinar, E., Aksu, I. (2013). An investigation of fastness properties of textile materials colored with azo dyes. Journal of Textiles and Engineer, 20(90), 17–24.

Koh, J., Greaves, A.J. (2001). Synthesis and application of an alkali-clearable azo disperse dye containing a fluorosulfonyl group and analysis of its alkalihydrolysiskinetics. Dyes Pigm., 50(2), 117–126.

Raghavendra, K.R, Kumar, A.K. (2013). Synthesis of some novel azo dyes and their dyeing, redox and antifungal properties. Int. J. ChemTech Res., 5(4), 1756–1760.

Chermahini, A.N., Doukheh, M., Hassan, H. Z., Bostanian, M. (2012). Application of modified clays in diazotization and azo coupling reactions in water J. Ind. and Engineering Chem., 18(2), 826–833.

Bahatti, H.S., Seshadri, S. (2004) Synthesis and fastness properties of styryl and azo disperse dyes derived from 6-nitro substituted 3-aryl-2-methyl-4(3H)-quinazolinone. Color. Technol. 120(4),151–155. DOI: 10.1111/j.1478-4408.2004.tb00221.x

Franco J.H. et al.(2018). Identification of biotransformation products of disperse dyes with ratliver microsomes by LC-MS/MS and theoretical studies with DNA: Structure-mutagenicity relationship using Salmonella/microsome assay. Science of the Total Environment 613–614 , 1093–1103.

Heiss, G. S., Gowan, B., Dabbs, E. R. (1992). Cloning of DNA from a Rhodococcus strain conferring the ability to decolorize sulfonated azo dyes. FEMS Microbiol. Lett., 99(2-3), 221–226.

Revanasiddappa H.D., Manju B. (2001). Spectrophotometric methods for the determination of ritodrine hydrochloride and its application to pharmaceutical preparations. II Farmaco, 56, 615-619.

Rageh, N.M. (2004). Electronic spectra, solvatochromic behavior and acid–base properties of some azo cinnoline compounds. Spectrochim. Acta, part A, 60 (1-2), 103–109.

Nagaraja, P., Yathirajan, H. S., Raju, C. R., Vasantha, R. A., Nagendra P., Hemantha Kumar, M.S. (2003). 3-Aminophenol as a novel coupling agent for the spectrophotometric determination of sulfonamide derivatives. II Farmaco, 58(12),1295–1300.

Zhang, K., Hu, Y., Li, G. (2013) Diazotization-coupling reaction-based selective determination of nitrite in complex samples using shell-isolated nanoparticle-enhanced Raman spectroscopy. Talanta, 116, 712–718.

Zhao, Y., He, J. (2009). Azobenzene-containing block copolymers: the interplay of light and morphology enables new functions. Soft Matter 5, 2686-2693.

Barrett, C.J., Mamiya, J.-I.., Yager, K. G., Ikeda, T. (2007). Soft Photo-mechanical effects in azobenzene-containing soft materials. Soft Matter.3, 1249-1261.

Ikeda, T.J. (2003). Photomodulation of liquid crystal orientations for photonic applications. J. Mater. Chem., 13, 2037-2057. DOI: 10.1039/B306216N

Nunes, G.E, Sehnem A.L, Bechtold I. H. (2012). Self-assembled azo-dye film as an efficient liquid crystal aligning layer. Liquid Crystals, 39, 205-210.

Fehrentz, T., Schonberger, M., Trauner, D. (2011). Optochemical Genetics. Angew. Chem., Int. Ed., 50(51), 12156-12182.

Barber, D. M., Schönberger, M., Burgstaller, J., Levitz, J., Weaver, C. D., Isacoff, E. Y., Baier, H., Trauner, D.( 2016). Optical control of neuronal activity using a light-operated GIRK channel opener (LOGO). Chem. Sci., 7, 2347-2352.

Beharrya, A. A., Woolley, G. A. (2011). Azobenzene photoswitches for biomolecules.Chem. Soc. Rev., 40, 4422-4437. DOI:10.1039/c1cs15023e

Dou, Y.S., Hu, Y, Yuan, S. A., Wu, W. F., Tang, H. (2009). Detailed mechanism of transe cis photoisomerization of azobenzene studied by semiclassical dynamics simulation. Mol. Phys., 107, 181-190.

Sakai, N., Fujii, K., Nabeshima, S., Ikeda, R., Konakahara, T. (2010). Highly selective conversion of nitrobenzenes using a simple reducing system combined with a trivalent indium salt and a hydrosilane. Chem. Commun., 46, 3173-3175.

Zhu, H., Ke, X., Yang, X., Sarina, S., Liu, H. (2010). Reduction of Nitroaromatic Compounds on Supported Gold Nanoparticles by Visible and Ultraviolet Light. Angew. Chem., 122(50), 9851-9855.

Hu, L., Cao, X., Shi, L., Qi, F., Guo, Z., Lu, J., Gu, H. (2011). A Highly Active Nano-Palladium Catalyst for the Preparation of Aromatic Azos under Mild Conditions. Org. Lett., 13(20), 5640-5643.

Lu, W., Xi, C. (2008). CuCl-catalyzed aerobic oxidative reaction of primary aromatic amines. Tetrahedron Lett., 49(25), 4011-4015.

Reuter, R., Hostettler, N., Neuburger, M., Wegner, H. A. (2009). Synthesis and Property Studies of Cyclotrisazobenzenes. Eur. J. Org. Chem. 2009 (32), 5647–5652.

Monir, K., Ghosh, M., Mishra, S., Majee, A., Hajra, A. (2014). Phenyliodine(III) Diacetate (PIDA) Mediated Synthesis of Aromatic Azo Compounds through Oxidative Dehydrogenative Coupling of Anilines: Scope and Mechanism. Eur. J. Org. Chem. 2014, 1096–1102.

Okumura, S., Lin, C. H., Takeda, Y., Minakata, S. (2013). Oxidative Dimerization of (Hetero)aromatic Amines Utilizing t-BuOI Leading to (Hetero)aromatic Azo Compounds: Scope and Mechanistic Studies. J. Org. Chem. 78 (23), 12090–12105.

Reddy, C.B. R., Reddy, S. R., Naidu, S. (2014). Cu(I) catalyzed dehydrogenative homo coupling of aromatic amines under simple and mild reaction conditions. Catalysis Commun. 56, 50–54.

Singh, S., Chauhan, P., Ravi, M., Taneja, I., Wahajuddinb, Yadav P. P. (2015). A mild CuBr–NMO oxidative system for the coupling of anilines leading to aromatic azo compounds. RSC Adv., 76, 61876–61880.

Zhao, L., Huang, Y., Liu, X., Anema, J. R., Wu, D., Ren, B., Tian, Z. (2012). A DFT study on photoinduced surface catalytic coupling reactions on nanostructured silver: selective formation of azobenzene derivatives from para-substituted nitrobenzene and aniline. Phys. Chem. Chem. Phys., 14, 12919–12929.

Paebumrung, P., Petsom, A., Thamyongkit, P. (2012). Cardanol-Based Bis(azo) Dyes as a Gasoline 91 Colorant. J. Am. Oil. Chem. Soc. 89, 321–328.

Deshmukh, M.S., Sekar, N. (2014). A combined experimental and TD-DFT investigation of three disperse azo dyes having the nitroterephthalate skeleton. Dyes and Pigments, 103, 25-33.

Aktan, E., Ertan, N., Uyar, T. (2014). Synthesis, characterization and theoretical study of new hetarylazopyrazolone dyes and investigation of their absorption spectra. Journal of Molecular Structure, 1060, 215–222.

Velasco, M.I., Kinen, C.O., Rossi, R.H., Rossi, L.I. (2011). A green alternative to synthetize azo compounds. Dyes Pigments, 90(3), 259–264.

Valizadeh, H., Shomali, A. (2012). A new nitrite ionic liquid (IL-ONO) as a nitrosonium source for the efficient diazotization of aniline derivatives and in-situ synthesis of azo dyes. Dyes Pigments, 92(3), 1138–1143.

Dabbagh, H.A., Mansoori Y. (2002). New azoic dyes containing (1H)-tetrazole and azido group. Dyes Pigments, 54(1), 37–46.

Modi, V. P., Patel, H. S. (2013). Synthesis, Characterization of Novel Bisheteroaryl Bisazo Dyes, and Their Dyeing and Solvatochromic Behavior. Heteroatom Chemistry, 24(3), 208–220.

Patel, D. M., Patel, T. S., Dixit, B. C. (2013). Synthesis, characterization and dyeing performance of new bisazo–bisazomethine disperse dyes. Journal of Saudi Chemical Society, 17, 203–209.

Patel, H. M., Dixit, B. C. (2014). Synthesis, characterization and dyeing assessment of novel acid azo dyes and mordent acid azo dyes based on 2-hydroxy-4-methoxybenzophenone-5-sulfonic acid on wool and silk fabrics. Journal of Saudi Chemical Society, 18(5), 507–512.

Satam, M.A., Raut, R. K., Sekar, N. (2013). Fluorescent azo disperse dyes from 3-(1,3-benzothiazol-2-yl)naphthalen-2-ol and comparison with 2-naphthol analogs. Dyes Pigments, 96, 92–103.

Zarei, A., Hajipour, A. R., Khazdooz, L., Mirjalili, B. F., Chermahini, A. N. (2009). Rapid and efficient diazotization and diazo coupling reactions on silica sulfuric acid under solvent-free conditions. Dyes Pigments, 81, 240–244.

Moradi-e-Rufchahi, E. (2010). Synthesis of 6-chloro and 6-fluoro-4-hydroxyl-2-quinolone and their azo disperse dyes. Chinese Chemical Letters, 21(5), 542–546.

Safari, J., Zarnegar, Z. (2015). An environmentally friendly approach to the green synthesis of azo dyes in the presence of magnetic solid acid catalysts. RSC Adv., 5, 17738–17745. DOI: 10.1039/C4RA13562H

Ivonin, S.P., Kopteva, S.D., Serdyuk, V.N., Tolmachev A.A. (2000). [Phosphorylation of diarylamines]. Zhurn. org. khimiim, 36 (3), 422–428 (in Russian).

Ivonin, S.P., Kopteva, S.D., Dmitrikova, L.V. (2002). [Formilation of N-methyldiarylamines]. Vіsnik Dnіpropetr.un-tu. Khіmіya, 8, 57–62 (in Russian).

Kopteva, S.D., Dmitrikova, L.V., Dunyashenko, Ya.A. (2007). [Selective bromination of arylnaphthylamines]. Vіsnik Dnіpropetr. un-tu, serіya Khіmіya, 13(10/2), 131–136 (in Russian).

Kopteva, S.D., Dmitrikova, L.V., Velіchenko, Yu.O. (2010). [Formilation of diarylamines and their N-methyl derivatives in the conditions of Haak reaction] Vіsnik Dnіpropetr. un-tu, serіya Khіmіya, 16,.93–99 (in Russian).

Okovytyy, S.I., Kopteva, S.D., Voronkov, E.O., Sergeieva, T. Yu., Kapusta, K.S., Dmitrikova, L.V., Leszczynski, J. (2013). 1H NMR spectra of N-methyl-4-tolyl-1-(4-bromonaph-thyl)-amine and N-phenyl-1-(4-bromonaphthyl)-amine: A combined experimental and theoretical study. Vіsnik Dnіpropetr. un-tu, serіya Khіmіya, 21 (3/1), 7–15.

Ivonin, S.P., Kopteva, S.D., Serdyuk, V.N., Lapandin, A.V. (2000). [N-methylphenyl-1- naphthylamine in electrophilic substitution reactions]. Vіsnik Dnіpropetr. un-tu, serіya Khіmіya, 5, 8–12 (in Russian).

Kopteva, S.D., Dmitrikova, L.V., Glushko, A. I. (2005). [Phenyl-1-naphthylamine in electrophilic substitution reactions]. Vіsnik Dnіpropetr. un-tu, serіya Khіmіya, 11(7), 93–95 (in Russian).

Kopteva, S.D., Dmitrikova, L.V., Glushko, A. I. (2004). [N-methyl-4-tolyl-1-naphtylamin in electrophilic substitution reactions]. Vіsnik Dnіpropetr. un-tu, serіya Khіmіya, 10(10), 30–33 (in Russian).

Nejati, K., Rezvani, Z., Seyedahmadian M. (2009). The synthesis, characterization, thermal and optical properties of copper, nickel, and vanadyl complexes derived from azo dyes. Dyes Pigm., 83(3), 304–311.

Miao, H. et al. (2019). Aerobic Oxidative Coupling of Aniline Catalyzed by One-Dimensional Manganese Hydroxide Nanomaterials Georg Thieme Verlag Stuttgart New York — Synlett, 30, A–E. DOI: 10.1055/s-0037-1612108

Salman, H.H., Abood, H. S., Ramadhan, U.H. (2019). Synthesis of Some New Azo Compounds of Salicylic Acid Derivatives and Determine Their In Vitro Anti-Inflammatory Activity. Orient. J. Chem., 35(2), 870-876.

Kostyuchenko, E.E. Traven, V.F., Mhitarov, R.A., Stepanov, B.I. (1980). [Tautomernyie prevrascheniya i tsvet monoazokrasiteley. II. Krasiteli na osnove fenil(naftil)aminov]. Zhurn. organ. him., 16(8), 1702 – 1707 (in Russian).

Voronkov, E., Rossikhin, V., Okovytyy, S., Shatckih, A., Bolshakov, V., Leszczynski, J. (2012). Novel Physically Adapted STO##-3G Basis Sets. Efficiency for Prediction of Second-Order Electric and Magnetic Properties of Aromatic Hydrocarbons. Int. J. Quantum Chem., 112, 2444−2449.

Sergeieva, T., Bilichenko, M., Holodnyak, S., Monaykina, Y.V., Okovytyy, S.I., Kovalenko, S.I., Voronkov, E., Leszczynski, J. (2016). Origin of substituent effect on tautomeric behavior of 1,2,4-triazole derivatives: Combined spectroscopic and theoretical study. J. Phys. Chem. A., 120, 10116–10122.