THE INTERACTION OF THE 4-CARBOXYPHENYLGLYOXAL WITH N-HYDROXYUREA AND N-ALKOXY-N’-ALKYL(ARYL)UREAS. THE STUCTURE OF 5-(4-CARBOXYPHENYL)-4,5-DIHYDROXY-1-METHYL-3-PROPYLOXYIMIDAZOLIDIN-2-ONE
DOI:
https://doi.org/10.15421/jchemtech.v29i4.233171Keywords:
3-alkoxy-1,5-bis(aryl)-4,5-dihydroxyimidazolidin-2-ones; 3-alkoxy-1-alkyl-5-aryl-4,5-dihydroxyimidazolidin-2-ones; synthesis; structure.Abstract
Aim. The investigation of the reaction of 4-carboxyphenylglyoxal with N-hydroxyurea, different N-alkoxy-N’-arylureas and N-propyloxy-N’-methylurea in acetic acid medium and the product structure. Methods.1H and 13C NMR, mass spectra and XRD study. Results. 3-Alkoxy-4,5-dihydroxyimidazolidin-2-ones are the only products of N-alkoxy-N’-alkyl(aryl)ureas interaction with 4-carboxyphenylglyoxal. The possibility of obtaining such dominating products as 3-alkoxy-1-aryl-5-(4-carboxyphenyl)-4,5-dihydroxyimidazolidin-2-ones and 3-alkoxy-1-alkyl-5-(4-carboxyphenyl)-4,5-dihydroxyimidazolidin-2-ones with cis orientation of 4-HO- and 5-HO-groups to each other has been proved in the experimental way. The product structure was revealed by the 1H and 13C NMR, mass spectra and XRD study. Also the structure of 5-(4-carboxyphenyl)-4S,5S-dihydroxy-1-methyl-3-propyloxyimidazolidin-2-one is discussed in this article. In this compound the endocyclic C(2)–C(3) bond is elongated to 1.562(2) Å) as compared to the average length of C(sp3)–C(sp3) ordinary bond. The N(1) atom has almost planar configuration whereas the N(2) atom has pyramidal configuration. The N(1)–C(1) bond is shorter than the N(2)–C(1) bond. 4-Carboxyphenylglyoxal reacts with N-hydroxyurea in acetic acid at room temperature with the selective formation of 5-(4-carboxyphenyl)-3-hydroxyimidazolidine-2,4-dione. Conclusions. 4-Carboxyphenylglyoxal reacts with N-propyloxy-N’-methylurea and N-alkoxy-N-arylureas in acetic acid at room temperature selectively producing 5-(4-carboxyphenyl)-4,5-dihydroxy-1-methyl-3-propyloxyimidazolidin-2-one and 3-alkoxy-1-aryl-5-(4-carboxyphenyl)-4,5-dihydro-xyimidazolidin-2-ones with cis orientation of 4-HO- and 5-HO-groups towards each other. In the same conditions 4-carboxyphenylglyoxal interacts with N-hydroxyurea yielding only 5-(4-carboxyphenyl)-3-hydroxyimidazolidine-2,4-dione.
References
Shtamburg, V. G.; Anishchenko, A. A.; Shtamburg, V. V.; Shishkin, O. V.; Zubatyuk, R. I.; Mazepa, A. V.; Rakipov, I. M.; Kostyanovsky, R. G. (2008). Synthesis and crystal structure of new imidazolidine-2,4-dione and imidazolidin-2-one derivatives, Mendeleev Commun., 18, 102–104. DOI: 10.1016/j.mencom.2008.03.018.
Kostyanovsky, R.G.; Shtamburg, V. G.; Shishkin, O. V.; Zubatyuk R. I.; Shtamburg, V. V.; Anishchenko, A. A.; Mazepa, A. V. (2010). Pyramidal nitrogen in the crystal of N-[(benzoyl)-(hydroxy)methyl]-N-benzyloxy-N’-(2-bromophenyl)urea. Mendeleev Commun., 20, 167–169. DOI: 10.1016/j.men.com.2010.05.015.
Shtamburg, V. G.; Shtamburg, V. V.; Anishchenko, A. A.; Zubatyuk R. I.; Mazepa, A. V.; Klotz, E. A.; Kravchenlo, S. V.; Kostyanovsky, R. G. (2015). Single-stage synthesis of 3-hydroxy- and 3-alkoxy-5-arylimidazolidine-2,4-diones by reaction of arylglyoxal hydrates with N-hydroxy- and N-alkoxyureas, Chem. Heterocycl. Comp., 51(6), 553–559; DOI 10.1007/s10593-015-1735-0.
Shtamburg, V. G.; Shtamburg, V. V.; Anishchenko, A. A.; Mazepa, Shishkina, S.V.; Konovalova, I.S. (2019). Synthesis and structure of 3,4,5-trihydroxy-5-(4-nitrophenyl)imidazolidin-2-one. Eur. Chem. Bull., 8(4), 110–114. DOI: 10.17628/ecb.2019.8.110-114.
Shtamburg, V. G.; Shtamburg, V. V.; Anishchenko, A. A.; Shishkina, S.V.; Mazepa, A.V.; Konovalova, I.S. (2019). 3-Alkoxy-1,5-diaryl-4,5-dihydroxyimidazolidin-2-ones and 3-Alkoxy-1-alkyl-5-aryl-4,5-dihydroxyimid-azolidin-2-ones: Synthesis and Structure. Eur. Chem. Bull., 8(9), 282–290. DOI: http:/dx.doi.org./10.17628/ecb.2019.8.282-290.
Shtamburg, V.G.; Anishchenko, A.A.; Shtamburg, V.V.; Pletenets, A.V., Zubatyuk R.I.; Shishkin, O.V. (2011). [Synthesis and structure of N-[(benzoyl)-(hydroxy)methyl]-N-ethoxy-N’-(2-bromophenyl)urea], Voprosy Khimii i Khim. Technology, 5, 13–17 (in Russian).
Konnert, L.; Lamaty, F.; Martinez, J.; Colacino, E. (2017). Recent Advances in the Synthesis of Hydantoins: The State of the Art of Valuable Scaffold, Chem. Rev., 117(23), 13757–13809;
DOI 10.1021/acs.chemrev.7b00067.
Hulme, C.; Bienayme, H.; Nixey, T.; Chenera, B.; Jones, W.; Tempest, P.; Smith, A.L. (2003). Library Generation Via Postcondensation Modifications of Isocyanide-Based Multicomponent Reactons. Methods Enzymol., 369, 469–496.
Savjani, J. K.; Gajjar, A.K. (2011). Pharmauceutical importance and SynthethicStrategies for imidazolidin-2-thione and Imidazol-2-thione Derivatives. Pak.J.Biol.Sci., 14, 1076–1089.
Meusel, M.; Gutschow, M. (2010). Recent Developmments in Hydantoin Chemistry. A Review. Org. Prep. Proced. In., 36, 391–443..
https://doi.org/10.1080/00304940409356627
Hulme, C., Ma, L.; Romano, J.; Morton, J.; Tang, S-Y.; Cherrier, M.-P.; Choi, S.; Salvino, J.; Labaudiniere, R. (2000). Novel Applications of Carbon Dioxide|MeOH for the Synthesis of Hydantoins and Cyclic Ureas Via the Ugi Reactions. Tetrahedron Lett., 41, 1889–1893.
Yang, C.; Schanne, F.A.X.; Yoganathan, S.; Stephani, R.A. (2016). Synthesis os N-1’,N-3’-disubstituted spirohydantoins and their anticonvulsant activities in pilocarpine model of temporal lobe epipepsy. Bioorg. Med. Chem. Lett., 26(12), 2912–2914. DOI: http:// doi.org/10.1016/j.bmcl.2016.04.040
Sadarangani, I.R.; Bhatia, S.; Amarante, D.; Lengyel, I.; Stephani, R.A. (2012). Synthesis, resolution and anticonvulsant activity of chiral N-1’-ethyl,N-3’-(1-phenylethyl)-(R,S)-2’H,3H,5’H-spiro-(2-benzofuran-1.4’-imidazolidine)-2’,3,5’-trione diastereomers. Bioorg. Med. Chem. Lett., 22(7), 2507–2509. DOI: http:// doi.org/10.1016/j.bmcl.2012.02.005
Lengyel, I.; Patel, H.J.; Stephani, R.A. (2007). The preparation and characterization of nineten new phtalidyl spirohydantoins. Heterocycles., 73, 349–375.
Staake, M. D., Kashinatham, A., McMorris, T.C., Estes, L.A., Kelner, M.J. (2016). Hydroxyurea derivatives of irofulven with improved antitumor efficacy. Bioorg. Med. Chem. Lett., 26(7), 1836–1838. DOI:10.1016/j.bmcl.2016.02.028
Azizian, J.; Karimi, A.R.; Soleimani, E.; Mohammadi, A.A.; Mohammadizadeh, M.R. (2006). Highly Functionalized Dihydrofuran Derivatives: Synthesis by Diastereoselective Intramolecular Wittig Reaction, Heteroatom. Chem., 17(4), 277–279. DOI: 10/1002hc
Jong, J.A.W.; Moret, M.-E.; Verhaar, M.C., Hennink, W.E.; Gerritsen, K.G.F.; Van Nostrum, C.F. (2018). Effect of Substituents on the Reactivity of Ninhydrin with Urea, ChemistrySelect, 3, 1224–1229.
DOI: 10/1002slct201800040.
Patel, H.J.; Sarra, J.; Caruso, F.; Rossi, M.; Doshi, U.; Stephani, R.A. (2006). Synthesis and anticonvulsant activity of new N-1’,N-3’-disubstituted-2’H,3H,5’H-spiro-(2-benzofuran-1,4’-imidazolidine)-2’,3,5’-triones. Bioorg.Med.Chem.Lett., 16(17), 4644–4647. doi:10.1016/j.bmcl.2006.05.102
Jong, J.A.W.; Smakman, R.; Moret, M.-E.; Verhaar, M.C., Hennink, W.E.; Gerritsen, K.G.F.; Van Nostrum, C.F. (2019). Reactivity of (Vicinal) Carbonyl Compounds with Urea, ACS Omega, 4, 11928–11937. DOI: 10/1021acsomega.9b01177
Suarez, A.; Martinez, F.; Sanz, R. (2016). Synthesis of α-functionalized α-indol-3-yl carbonyls through direct SN reactions of indol-3-yl α-acyloins, Org. Biomol. Chem. 14, 11212−11219.
https://doi.org./10.1039/c6ob02125e.
Suarez, A.; Martinez, F.; Suarez-Pantiga, S.; Sanz, R. (2017). PTSA-Catalysed Reaction of Indoles with 2-Oxoaldehydes: Synthesis of Bis-α,α(indol-3-yl) Ketones. Chemistry Select, 1, 1–5. DOI: 10.1002/slct.201700013.
Eftekhari-Sis, B.; Zirak, M.; Akrabi, A. (2013). Arylglyoxals in Synthesis of Heterocyclic Compounds, Chem. Rev., 113(5), 2958–3043; DOI 10.1021/cr300176g.
Meusel, M.; Gutschow, M. (2004). Recent Developments in Hydantoin Chemistry. A Review. Organic Preparations and Procedures International: The new Journal for Organic Synthesis, 36(5), 391–443; http// dx.doi.org/10.1080/0030494040935662720.
Sheldrick, G.M. (2008). A short history of SHELX, Acta Cryst., Sect. A., A64, 112–122.
https://doi.org/10.1107/S0108767307043930
Burgi, H.-B., Dunitz, J.D. (1994). Structure correlation, 2, 741−784. https://doi.org./10.1107/S0108768195009931
Shtamburg, V.G.; Shtamburg, V.V.; Anishchenko, A.A.; Shishkina, S.V.; Mazepa, A.V.; Konovalova, I.S. (2020). Interactions of Ninhydrin with N-Hydroxyurea and N-Alkoxyureas in Acetic Acid. Eur. Chem. Bull., 9(5), 125–131.
DOI: http:/dx.doi.org/10.17628/ecb.2020.9.125-131.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Днипровский национальный университет имени Олеся Гончара
This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors reserve the right of attribution for the submitted manuscript, while transferring to the Journal the right to publish the article under the Creative Commons Attribution License. This license allows free distribution of the published work under the condition of proper attribution of the original authors and the initial publication source (i.e. the Journal)
- Authors have the right to enter into separate agreements for additional non-exclusive distribution of the work in the form it was published in the Journal (such as publishing the article on the institutional website or as a part of a monograph), provided the original publication in this Journal is properly referenced
- The Journal allows and encourages online publication of the manuscripts (such as on personal web pages), even when such a manuscript is still under editorial consideration, since it allows for a productive scientific discussion and better citation dynamics (see The Effect of Open Access).