DEVELOPMENT OF COMPOSITE MATERIAL REINFORCED WITH DECAGONAL QUASICRYSTALS FOR WORKING IN SEA ATMOSPHERE
DOI:
https://doi.org/10.15421/jchemtech.v29i4.236728Keywords:
composites;, furnace infiltration;, quasicrystalline fillers;, sodium chloride solution;, corrosion resistance.Abstract
The structure and corrosion properties of quasicrystalline Al65Co20Cu15 and Al72Co18Ni10 fillers and composites on their base were investigated in this work. Composites were fabricated by furnace infiltration without applying pressure. Copper-based alloys of Л62 and БрОЦ 10-2 grades or aluminum-based alloy of АМг30 grade were used as metal binders of composites. Structural and phase composition of the fillers and the composites was determined by methods of metallography, scanning electron microscopy, energy-dispersive X-ray spectrometry, and X-ray analysis. Corrosion properties were investigated by potentiodynamic and gravimetric methods in aqueous solution of NaCl (рН=7.0) at room temperature. In the structure of the studied fillers, the quasicrystalline decagonal D-phase was established to coexist with crystalline Al4(Co,Cu)3 and Al3(Cu,Co)2 phases of the Al65Co20Cu15 filler or Al9(Co,Ni)2 phase of the Al72Co18Ni10 filler. As results of corrosion tests evidence, Al72Co18Ni10 filler has higher resistance to corrosion in sodium chloride solution as compared with that of Al65Co20Cu15 filler. The highest corrosion rate shows the composite material with АМг30 binder and Al65Co20Cu15 filler, the lowest – material with БрОЦ 10-2 binder and Al72Co18Ni10 filler that may be recommended as protective coating in sea climate.
References
Sukhova, О. V., Syrovatko, Yu. V. (2011) Features of Structurization of Composite Materials of the Solution-and-Diffusion Type. Metallofiz. Noveishie Tekhnol., 33(Special Issue), 371–378.
Spiridonova, I. M., Sukhovaya, E. V., Butenko, V. F., Zhudra, А. P., Litvinenko, А. I., Belyi, А. I. (1993) Structure and Properties of Boron-Bearing Iron Granules for Composites. Powder Metall. Met. Ceram, 32(2), 139–141. https://doi.org/10.1007/BF00560039.
Luca, B., Pham, J., Steinhardt, P. J. (2018) Previously Unknown Quasicrystal Periodic Approximant Found in Space. Sci. Rep., 8, 1–8. https://doi.org/10.1038/s41598-018-34375-x.
Zou, Y., Kuczera, P., Wolny, J. (2016) Fitting the Long-Range Order of a Decagonal Quasicrystal. Acta Phys. Pol. A, 130(4), 845–847. https://doi.org/10.12693/aphyspola.130.845.
Dubois, J.-M. (2012) Properties and Applications of Quasicrystals and Complex Metallic Alloys. Chem. Soc. Rev., 41, 4760–6777. https://doi.org/10.1039/C2CS35110B.
Wolf, W., Bolfarini, C., Kiminami, C. S., Botta, W. J. (2020) Designing New Quasicrystalline Compositions in Al-Based Alloys. J. Alloys Compd. 823(1–2), 1–6. https://doi.org/10.1016/j.jallcom.2020.
Jamshidi, L. C., Rodbari, R. J., Nascimento, L., Hernandez, E. P., Barbosa, C. M. (2018) Oxidation influence of the quasicrystalline phases of alloys Al62.5Cu25Fe12.5 and Al65Ni15Co20. Mor. J. Chem., 6(3), 445–454. https://doi.org/10.48317/IMIST.PRSM/morjchem-v6i3.5431.
Ryabtsev, S. I., Polonskyy, V. A., Sukhova, O. V. (2020) Effect of Scandium on the Structure and Corrosion Properties of Vapor-Deposited Nanostructured Quasicrystalline Al–Cu–Fe Films. Powder Metall. Met. Ceram, 58(9–10), 567–575. https://doi.org/10.1007/s11106-020-00111-2.
Wolf, W., Bolfarini, C., Kiminami, C. S., Botta, W. J. (2021) Recent Developments on Fabrication of Al-Matrix Composites Reinforced with Quasicrystals: From Metastable to Conventional Processing. J. Mater. Res., 36, 281–297. https://doi.org/10.1557/s43578-020-00083-4.
Jithesh, K., Prabhu, T. R., Anant, R. V., Arivarasu, M., Srinivasan, A., Mishra, R. K., Arivazhagan, N. (2019) An Overview of Quasicrystal Reinforced Magnesium Metal Matrix Composites. Mater. Sci. Forum., 969, 218–224. https://doi.org/10.4028/www.scientific. net/MSF.969.218.
Kamalnath, M., Mohan, B., Singh, A., Thirumavalavan, K. (2020) Development of Al1070 Quasicrystal (Al65Cu23Fe12) Composites Using Friction Stir Processing and Its Mechanical Characterization. Mater. Res. Express, 7(2), 1–11. https://doi.org/10.1088/2053-1591/ab71c5.
Zhu, M., Yang, G., Yao, L., Cheng, S., Zhou, Y. (2010) Microstructure and Mechanical Properties of Al-Base Composites by Addition of Al–Ni–Co Decagonal Quasicrystalline Particles Through a Mechanical Stirring Route. J. Mater. Sci., 45(14), 3727–3734. https://doi.org/10.1007/s10853-010-4421-8.
Xiao, J. H., Ding, W., Peng, Y., Chen, T., Zou, K. (2020) Preparing Sc-Bearing Master Alloy Using Aluminum-Magnesium Thermoreduction Method. Met., 10(7), 960. https://doi.org/10.3390/met10070960.
Yadav, T. P., Singh, D., Tiwari, R. S., Srivastava, O. N. (2012) Enhanced Microhardness of Mechanically Activated Carbon-Quasicrystal Composite. J. Mater. Lett., 80, 5–8. https://doi.org/10.1016/J.MATLET.2012.04.034.
Babilas, R., Bajorek, A., Spilka, M., Radon, A., Lonski, W. (2020) Structure and Corrosion Resistance of Al-Cu-Fe Alloys. Prog. Nat. Sci., 30(3), 393–401. https://doi.org/10.1016/j.pnsc.2020.06.002.
Bardzinski, P. J. (2021) New Al3Si7 Phase with Tetragonal Silicon Structure in Quasicrystal-Forming Near-Eutectic Al-Cu-Fe-Si Alloys. J. Alloys Compd., 869, 159349. https://doi.org/10.1016/j.jallcom.2021.159349.
Bogdanowicz, W., Krawczyk, J. (2010) X-Ray Topography Study of Deformed Composites Obtained by Directional Solidification of Al–Cu–Co Alloy. Cryst. Res. Technol., 45(12), 1321–1325. https://doi.org/10.1002/crat.201000313.
Spyrydonova, I. М., Sukhova, O. V., Zinkovskij, G. V. (2012) Thin films and composites based on quasicrystal Al–Cu–Fe alloy. Metallurgical and Mining Industry, 4(4), 2–5.
Posuvailo, V. M., Kulyk, V. V., Duriagina, Z. A., Koval’chuck, I. V., Student, M. M., Vasyliv, B. D. (2020) The Effect of Electrolyte Composition on the Plasma Electrolyte Oxidation and Phase Composition of Oxide Ceramic Coatings Formed on 2024 Aluminium Alloy. Arch. Mater. Sci. Eng., 105(2), 49–55. https://doi.org/10.5604/01.3001.0014.5761.
Kovbasiuk, T. M., Selivorstov, V. Yu., Dotsenko, Yu. V., Duriagina, Z. A., Kulyk, V. V., Kasai, O. M., Voitovych, V. V. (2020) The Effect of the Modification by Ultrafine Silicon Carbide Powder on the Structure and Properties of the Al–Si Alloy. Arch. Mater. Sci. Eng., 101(2), 57–62. https://doi.org/10.5604/01.3001.0014.1191.
Sukhovaya, E. V. (2013) Structural approach to the development of wear-resistant composite materials. J. Superhard Mater., 35(5), 277–283. https://doi.org/10.3103/S106345761305002X.
Spiridonova, I. M., Sukhova, О. V., Vashchenko, A. P. (1999) Multicomponent Diffusion Processes in Boride-Containing Composite Materials. Metallofiz. Noveishie Tekhnol., 21(2), 122–125.
Sukhova, O. V. (2009) Influence of mechanisms of structure formation of interfaces in composites on their properties. Metallofiz. Noveishie Tekhnol., 31(7), 1001–1012.
Yubuta, K., Yamamoto, K., Yasuhara, A., Hiraga, K. (2014) Structure of аn Al-Cu-Co Decagonal Quasicrystal Studied by Cs-Corrected STEM. Mater. Trans., 55(6), 866–870. https://doi.org/10.2320/matertrans.M2014008.
Zou, Y., Wheeler, J. M., Sologubenko, A. S., Michler, J., Streurer, W., Spolenak, R. (2016) Bridging Room-Temperature and High-Temperature Plasticity in Decagonal Al–Ni–Co Quasicrystal by Microthermomechanical Testing. Phil. Mag., 96(32–34), 3356–3378. https://doi.org/10.1080/14786435.2016.1234722.
Sukhova, О. V., Ustinova, K. V. (2019) The Effect of Cooling Rate on Phase Composition of Quasicrystalline Al–Cu–Fe Alloys Doped with Si and B. Funct. Mater., 26(3), 495–506. https://doi.org/10.15407/fm26.03.495.
Sukhova, О. V., Polonskyy, V. A., Ustinova, K. V. (2018) Microstructure and Corrosion Properties of Quasicrystal Al–Cu–Fe Alloys Alloyed with Si and B in Acidic Solutions. Voprosy Khimii i Khimicheskoi Tekhnologii, 121(6), 77–83. https://doi.org/10.32434/0321-4095-2018-121-6-77-83.
Sukhova, О. V., Polonskyy, V. A., Ustinova, K. V. (2018) Influence of Si and B on Structure and Corrosion Properties of Quasi-Crystalline Al–Cu–Fe Alloys in Solutions of Salts. Metallofiz. Noveishie Tekhnol., 40(11), 1475–1487. https://doi.org/10.15407/mfint.40.11.1475.
Laplanche, G., Joulain, A., Bonneville, J., Schaller, R., Kabir, T. El. (2010) Microstructures and Mechanical Properties of Al-Base Composite Materials Reinforced by Al–Cu–Fe Particles. J. All. Compd., 493(1–2), 453–460. https://doi.org/10.1016/j.jallcom.2009.12.124.
Zhen, Y. L., Hao, R. G., Hai, O. Q. (2011) Microstructure and Mechanical Properties of Al–7%Si Matrix Composites Reinforced with Al63Cu25Fe12 Icosahedral Quasicrystal Particles. Appl. Mech. Mater., 55–57, 1022–1027. https://doi.org/10.4028/www.scientific.net/AMM.55-57.1022.
Sukhova, О. V. (2020) The Effect of Carbon Content and Cooling Rate on the Structure of Boron-Rich Fe–B–С Alloys. Phys. Chem. Solid St., 21(2), 355–360. https://doi.org/10.15330/pcss.21.2.355-360.
Hiraga, K., Ohsuna, T., Sun, W., Sugiyama, K. (2002) The Structural Characteristics of Al–Co–Ni Decagonal Quasicrystals and Crystalline Approximants. J. Alloys Compd., 342(1–2), 110–114. https://doi.org/10.1016/S0925-8388(02)00153-6.
Singh, V. K., Barman, S. R. (2020) Study of Single Grain Decagonal Al–Ni–Co Quasicrystal Surface. AIP Conf. Proc., 2265, 1–7. https://doi.org/10.1063/5.0016759.
Mihalkovic, M., Widom, M., Henley, C. L. (2010) Cell-Constrained Melt-Quench Simulation of D-AlCoNi: Ni-Rich Versus Co-Rich Structures. Phil. Mag., 91(19), 2557–2566. https://doi.org/10.1080/14786435.2010.515264.
Tsai, A.-P., Inoue, A., Masumoto, T. (1989) A Stable Decagonal Quasicrystal in the Al–Cu–Co System. Mater. Trans. JIM, 30(4), 300–304. https://doi.org/10.2320/matertrans1989.30.300.
Zhang, I. M., Gille, P. (2004) Solidification Study of Al–Cu–Co Alloys Using the Bridgman Method. J. Alloys Compd., 370(1–2), 198–205. https://doi.org/10.1016/j.jallcom.2003.09.033.
Sukhova, О. V., Syrovatko, Yu. V. (2019) New Metallic Materials and Synthetic Metals. Metallofiz. Noveishie Tekhnol., 41(9), 1171–1185. https://doi.org/10.15407/mfint.41.09.1171.
Jamshidi, L. C., Bodbari, R. J. (2018) Evolution of the Phases of Quasicrystalline Alloys Icosahedral/Decagonal Al62.2Cu25.3Fe12.5/Al65Ni15Co20 and Oxidative Behavior. J. Chilean Chem. Soc., 63(2), 3928–3933. https://doi.org/10.4067/s0717-97072018000203928.
Jamshidi, L. C., Rodbari, R. J., Nascimento, L., Hernandez, E. P., Barbosa, C. M. (2016) Formation of phase icosahedral and decagonal quasicrystalline alloys Al62.5Cu25Fe12.5/Al65Ni15Co20 influence on the oxidation. J. Met. Mater. Miner., 26(1), 9–16. https://doi.org/10.14456/jmmm.2016.2.
Sukhova, О. V., Polonskyy, V. A., Ustinova, K. V. (2017) Structure Formation and Corrosion Behaviour of Quasicrystalline Al–Ni–Fe Alloys. Phys. Chem. Solid St., 18(2), 222–227. https://doi.org/10.15330/PCSS.18.2.222-227.
Sukhova, O. V., Polons’kyi, V. A., Ustinova, K. V. (2019) Corrosion Resistance of Alloys of the Al–Cu–Fe–(Si, B) System in Mineralized Saline and Acid Solutions. Mater. Sci., 55(2), 285–292. https://doi.org/10.1007/s11003-019-00302-2.
Sukhova, O. V., Polonskyy, V. A., Ustinova, K. V. (2019) Corrosion-Electrochemical Properties of Quasicrystalline Al–Cu–Fe–(Si,B) and Al–Ni–Fe Alloys in NaСl Solution. Voprosy Khimii i Khimicheskoi Tekhnologii, 124(3), 46–52. https://doi.org/10.32434/0321-4095-2019-124-3-46-52.
Zubchenko, А. S. (2016) Steels and Alloys Brand Book. Moscow: Mashinostroeniye.
Zharskyy, I. M., Ivanova, N. P., Kuis, D. V., Svidunovich, N. A. (2012) Corrosion and Protection of Metal Constructions and Equipment. Мinsk: Vysh. shk.
Cooke, K. (2020) Aluminum Alloys and Composites. London: Intechopen. https://doi.org/10.5772/intechopen.81519.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Днипровский национальный университет имени Олеся Гончара
This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors reserve the right of attribution for the submitted manuscript, while transferring to the Journal the right to publish the article under the Creative Commons Attribution License. This license allows free distribution of the published work under the condition of proper attribution of the original authors and the initial publication source (i.e. the Journal)
- Authors have the right to enter into separate agreements for additional non-exclusive distribution of the work in the form it was published in the Journal (such as publishing the article on the institutional website or as a part of a monograph), provided the original publication in this Journal is properly referenced
- The Journal allows and encourages online publication of the manuscripts (such as on personal web pages), even when such a manuscript is still under editorial consideration, since it allows for a productive scientific discussion and better citation dynamics (see The Effect of Open Access).