STRUCTURE AND CORROSION-ELECTROCHEMICAL PROPERTIES OF RAPIDLY QUENCHED Fe5CrCuNiMnSi AND Fe5CоCuNiMnSi HIGH ENTROPY ALLOYS

Authors

  • Volodymyr A. Polonskyy Дніпровський національний університет імені Олеся Гончара, Ukraine
  • Valerii F. Bashev Дніпровський національний університет імені Олеся Гончара, Ukraine
  • Oleksandr I. Kushnerov Дніпровський національний університет імені Олеся Гончара, Ukraine

DOI:

https://doi.org/10.15421/jchemtech.v30i1.237109

Keywords:

high-entropy alloys;, splat quenching;, structure;, phase composition;, electrochemical properties;, corrosion resistance.

Abstract

The phase composition and corrosion-electrochemical properties of Fe5CrCuNiMnSi and Fe5CоCuNiMnSi spalt-quenched high-entropy alloy films were studied. The alloy films were fabricated by a known technique of splat-quenching. A cooling rate estimated by film thickness was ~ 106 K/s. The electrochemical behavior and corrosion resistance was determined in a neutral solution of sodium chloride. Using X-ray diffraction analysis, the phase composition and crystal lattice parameters of the investigated high-entropy alloy films were determined. It was established that both Fe5CоCuNiMnSi and Fe5CrCuNiMnSi spalt-quenched high-entropy alloys are solid solutions with a face-centered cubic lattice. The values of stationary potentials and areas of electrochemical stability of alloys, as well as the density of corrosion currents, are determined. It has been shown that samples of the Fe5CrCuNiMnSi alloy behave inertly in corrosion tests. The obtained results also were compared with the characteristics of similar alloys obtained by casting.

References

Srivatsan, T. S., Gupta, M. (2020). High Entropy Alloys. Innovations, advances, and applications. CRC Press. https://doi.org/10.1201/9780367374426

Murty, B. S., Yeh, J. W., Ranganathan, S, Bhattacharjee, P.P. (2019). High-Entropy Alloys. 2nd Edition.Amsterdam: Elsevier Science Publishing Co Inc. https://doi.org/10.1016/C2017-0-03317-7.

Gao, M. C., Yeh, J.-W., Liaw, P. K., Zhang, Y. (Eds.). (2016). High-Entropy Alloys. Fundamentals and Applications. Springer International Publishing. https://doi.org/10.1007/978-3-319-27013-5.

Dong, Y., Yao, Z., Huang, X., Du, F., Li, C., Chen, A., Wu, F., Cheng, Y., & Zhang, Z. (2020). Microstructure and mechanical properties of AlCoxCrFeNi3-x eutectic high-entropy-alloy system. Journal of Alloys and Compounds, 823, 153886. https://doi.org/10.1016/j.jallcom.2020.153886

Kim, Y. K., Yang, S., Lee, K. A. (2020). Superior Temperature-Dependent Mechanical Properties and Deformation Behavior of Equiatomic CoCrFeMnNi High-Entropy Alloy Additively Manufactured by Selective Laser Melting. Scientific Reports, 10(1), 1–14. https://doi.org/10.1038/s41598-020-65073-2.

Gadelmeier, C., Haas, S., Lienig, T., Manzoni, A., Feuerbacher, M., Glatzel, U. (2020). Temperature Dependent Solid Solution Strengthening in the High Entropy Alloy CrMnFeCoNi in Single Crystalline State. Metals, 10(11), 1412. https://doi.org/10.3390/met10111412.

Sang, L., & Xu, Y. (2020). Amorphous behavior of ZrxFeNiSi0.4B0.6 high entropy alloys synthesized by mechanical alloying. Journal of Non-Crystalline Solids, 530, 119854. https://doi.org/10.1016/j.jnoncrysol.2019.119854.

Abdelghafar, K. A., Ibrahim, M. M., Shoeib, M. A., & Waly, M. A. (2020). Evaluation of microstructural and corrosion resistance of as-cast Cu45Mn25Al15Fe5Cr5Ni5 high entropy alloy. Materials Research Express, 7(1), 016579. https://doi.org/10.1088/2053-1591/ab6acb.

Zhou, E., Qiao, D., Yang, Y., Xu, D., Lu, Y., Wang, J., Smith, J. A., Li, H., Zhao, H., Liaw, P. K., & Wang, F. (2020). A novel Cu-bearing high-entropy alloy with significant antibacterial behavior against corrosive marine biofilms. Journal of Materials Science & Technology, 46, 201–210. https://doi.org/10.1016/j.jmst.2020.01.039.

Xiang, C., Han, E. H., Zhang, Z. M., Fu, H. M., Wang, J. Q., Zhang, H. F., Hu, G. D. (2019). Design of single-phase high-entropy alloys composed of low thermal neutron absorption cross-section elements for nuclear power plant application. Intermetallics, 104, 143–153. https://doi.org/10.1016/j.intermet.2018.11.001Patel, D., Richardson, M. D., Jim, B., Akhmadaliev, S., Goodall, R., Gandy, A. S. (2020). Radiation damage tolerance of a novel metastable refractory high entropy alloy V2.5Cr1.2WMoCo0.04. Journal of Nuclear Materials, 531, 152005. https://doi.org/10.1016/j.jnucmat.2020.152005.

Chen, Y. H., Chuang, W. S., Huang, J. C., Wang, X., Chou, H. S., Lai, Y. J., Lin, P. H. (2020). On the bio-corrosion and biocompatibility of TiTaNb medium entropy alloy films. Applied Surface Science, 508, 145307. https://doi.org/10.1016/j.apsusc.2020.145307.

Perumal, G., Grewal, H. S., Pole, M., Reddy, L. V. K., Mukherjee, S., Singh, H., Manivasagam, G, Arora, H. S. (2020). Enhanced Biocorrosion Resistance and Cellular Response of a Dual-Phase High Entropy Alloy through Reduced Elemental Heterogeneity. ACS Applied Bio Materials, 3(2), 1233–1244. https://doi.org/10.1021/acsabm.9b01127.

Firstov, G. S., Kosorukova, T. A., Koval, Y. N., Odnosum, V. V. (2015). High Entropy Shape Memory Alloys. Materials Today: Proceedings, 2, S499–S503. https://doi.org/10.1016/j.matpr.2015.07.335.

Li, Y., Wang, S., Wang, X., Yin, M., Zhang, W. (2020). New FeNiCrMo(P, C, B) high-entropy bulk metallic glasses with unusual thermal stability and corrosion resistance. Journal of Materials Science & Technology, 43, 32–39.

https://doi.org/10.1016/j.jmst.2020.01.020.

Lu, J., Chen, Y., Zhang, H., Ni, N., Li, L., He, L., Mu, R., Zhao, X,Guo, F. (2020). Y/Hf-doped AlCoCrFeNi high-entropy alloy with ultra oxidation and spallation resistance. Corrosion Science, 166, 108426. https://doi.org/10.1016/j.corsci.2019.108426

Coimbrão, D. D., Zepon, G., Koga, G. Y., Godoy Pérez, D. A., Paes de Almeida, F. H., Roche, V., Lepretre, J.-C., Jorge, A.M., Kiminami, C.S., Bolfarini, C., Inoue, A.Botta, W. J. (2020). Corrosion properties of amorphous, partially, and fully crystallized Fe68Cr8Mo4Nb4B16 alloy. Journal of Alloys and Compounds, 826, 154123. https://doi.org/10.1016/j.jallcom.2020.154123.

Miracle, D. B., Senkov, O. N. (2017). A critical review of high entropy alloys and related concepts. Acta Materialia, 122, 448–511.

https://doi.org/10.1016/j.actamat.2016.08.081.

Miroshnichenko, I.S. (1982). Zakalka iz zhidkogo sostoyaniya. Moscow: Metallurgiya (in Russian).

Polonskyy, V. A., Bashev, V. F., Kushnerov, O. I. (2021). Structure and corrosion-electrochemical properties of Fe-based cast high-entropy alloys. Journal of Chemistry and Technologies, 28(2).

https://doi.org/10.15421/082019.

Bashev, V. F., Kushnerov, O. I. (2014). Structure and properties of high-entropy CoCrCuFeNiSnx alloys. The Physics of Metals and Metallography, 115(7), 692–696. https://doi.org/10.1134/S0031918X14040024.

Bashev, V. F., Kushnerov, O. I. (2017). Structure and properties of cast and splat-quenched high-entropy Al–Cu–Fe–Ni–Si alloys. Physics of Metals and Metallography, 118(1), 39–47. https://doi.org/10.1134/S0031918X16100033.

Bashev, V. F., Ryabtsev, S. I., Kushnerov, O. I., Kutseva, N. A., Antropov, S. N. (2020). Influence of Liquid Quenching on Phase Composition and Properties of Be-Si Eutectic Alloy. East European Journal of Physics, 3, 81–84. https://doi.org/10.26565/2312-4334-2020-3-10

Altomare, A., Corriero, N., Cuocci, C., Falcicchio, A., Moliterni, A., Rizzi, R. (2017). Main features of QUALX2.0 software for qualitative phase analysis. Powder Diffraction, 32(S1), S129–S134. https://doi.org/10.1017/S0885715617000240.

Sukhova, O. V., Polonskyy, V. A., Ustinova K. V. (2019). Corrosion-electrochemical properties of quasicrystal-line Al–Cu–Fe–(Si,B) and Al–Ni–Fe alloys in NaCl solution. Voprosy khimii i khimicheskoi tekhnologii. 3, 46-52. https://doi.org/ 10.32434/0321-4095-2019-124-3-46-52.

Sukhova, O.V., Polons’kyi, V.A. & Ustinova, K.V. (2019). Corrosion Resistance of Alloys of the Al–Cu–Fe–(Si, B) System in Mineralized Saline and Acid Solutions. Mater Sci 55, 291–298. https://doi.org/10.1007/s11003-019-00302-2

Published

2022-04-27