SYNTHESIS OF ZEOLITE FROM NATURAL CLAY AND RICE HUSK ASH TO LOWER THE BAND GAP OF TITANIA
DOI:
https://doi.org/10.15421/jchemtech.v30i1.237739Keywords:
Clay, Zeolite, semiconductor, photocatalyst, band gapAbstract
In this study, we have utilized clay from Pariaman, Indonesia enriched with silica from rice husk ash to produce zeolite through a hydrothermal process. The resulting zeolite is then composited with the most common semiconductor photocatalyst, an anatase titanium oxide, to increase the semiconductor efficiency in terms of particle distribution and light sources activation. From X-Ray Fluorescence (XRF) measurement, it can be seen that the Si/Al mole ratio in the clay has been successfully increased from 1.8 to 2.0. These data are strengthened by the results of X-Ray Diffraction (XRD) analysis which shows the formation of zeolites of several types consisting of zeolite faujasite, P1, sodalite, X, and nu-6. When the synthesized zeolite is mixed with titania anatase, a composite is formed as evidenced by FTIR analysis with the appearance of Si-O-Si and Si-O-Al absorption bands for zeolite and Ti-O-Ti from titania. This zeolite has been shown to reduce the bandgap energy of titanium oxide after the two materials have been composited. Measurements with Ultraviolet-Visible Diffuse Reflectance Spectroscopy (UV-Vis DRS) showed that the TiO2-anatase band gap decreased by about 20 %, from 3.20 to 2.56 eV allowing theoretically the composite to be considered as a promising photocatalyst.
References
Santos, L.R., Artur, J.S.M., Luciana, A.S. (2016). Preparation And Evaluation Of Composite With A Natural Red Clay And TiO2 For Dye Discoloration Assisted By Visible Light. Applied Clay Science, 135. doi: 10.1016/j.clay.2016.11.002
Angelia, Selvi Rina. (2014). Sintesis dan Karakterisasi Komposit Fotokatalis TiO2 Anatase dan Rutil dengan Zeolit Alam Teraktivasi serta Uji Aktifitasnya pada Reaksi Esterifikasi Minyak Goreng Bekas. Skripsi, 10630010.
Yang, Menjin. (2012). Band Gap Engineering and Carrier Transport In TiO2 For Solar Energy Harvesting. Skripsi University of Pittsburgh.
Setthaya, N., C. Prinya., S. Yin., P. Kedsarin. (2017). TiO2-Zeolit Photocatalysts Made Of Metakaolin And Rice Husk Ash For Removal Of Methylene Blue Dye. Powder technology, 313, doi: 10.1016/j.powtec.2017.01.014
Saravanan, R., Aviles, J., Gracia, F., Mosquera, E., Gupta, V. K. (2018). Crystallinity And Lowering Band Gap Induced Visible Light Photocatalytic Activity Of TiO2/CS (Chitosan) Nanocomposites. International Journal of Biological Macromolecules. 109, 1239–1245.
Choudhury, B. , Bayan, S., Choudhury, A., Chakraborty, P. (2016). Narrowing Of Band Gap And Effective Charge Carrier Separation In Oxygen Deficient TiO2 Nanotubes With Improved Visible Light Photocatalytic Activity. Journal of Colloid and Interface Science. 465. 1–10.
Liu, X., Liu, Y, Lu, S., Guo, W., Xi, B. (2018). Performance And Mechanism Into TiO2/Zeolite Composites For Sulfadiazine Adsorption And Photodegradation. Chemical Engineering Journal. 350, 131–147
Trivana, L. (2013). Sintesis dan Karakterisasi Sintesis Zeolit X Dan Komposit Zeolit/TiO2 Dari Kaolin Dengan Sekam Padi Sebagai Sumber Silika. Skripsi.
Nitya, V. N. C. (2012). Degradasi Limbah Deterjen (Senyawa Linear Alkilbenzen Sulfonat) Dengan Fotokatalis Komposit Berbasis TiO2 dan Batu Apung. Skripsi.
Mishra, A., Mehta, A., Basu, S. (2018). Clay Supported TiO2-Nanoparticles For Photocatalytic Degradation Of Environmental Pollutants: A Review. Journal of Environmental Chemical Engineering, 6(5), 6088-6107. https://doi.org/10.1016/j.jece.2018.09.029
Beata, Szczepanik. (2008). Photocatalytic Degradation Of Organic Contaminants Over Clay-TiO2 Nanocomposites: A Review. Applied Clay Science. 141: 227.
Poluokan, Michell.; Wuntu, Adi.; Sangi, Meiske. (2015). Aktivitas Fotokatalitik TiO2 – Karbon Aktif dan TiO2–Zeolit pada Fotodegradasi Zat Warna Remazol Yellow . Jurnal Mipa Unsrat Online 4, 2, 137–140.
Fuadi, A. M., Musthofa, M. Harismah, K., Haryanto, Hidayati, N. (2012). Pembuatan Zeolit Sintetis Dari Sekam Padi. Simposium Nasional RAPI XI FT UMS.
Sani, A. Arfan., Atiek, R. N., Diana, R. (2009). Pembuatan Fotokatalis TiO2-Zeolit Alam Asal Tasikmalaya Untuk Fotodegradasi Methylene Blue. Jurnal Zeolit Indonesia, 1(8), 6–14.
Fadlullah, M. (2014). Pengaruh Variasi Rasio Si/Al pada Sintesis Zeolit dengan Metode Refluks. Jurnal Kimia Sains dan Aplikasi, 17(3), 100 – 103
Saeed, M., Muneer, M., Akram, N., Ul Haq, A., Afzal, N., Hamayun, M. (2019). Synthesis And Characterization Of Silver Loaded Alumina And Evaluation Of Its Photo Catalytic Activity On Photo Degradation Of Methylene Blue Dye. Chemical Engineering Research and Design, 148: 218–226.
Mirmasoomi, S. R., Ghazi, M. M, Galedari, M. (2016). Photocatalytic Degradation Of Diazinon Under Visible Light Using TiO2 /Fe2O3 Nanocomposite Synthesized By Ultrasonic-Assisted Impregnation Method. Separation and Purification Technology, 175,418–427.
Ahmad, A. F., Risanti, D. D., Mawarni, L. J. (2013). Sintesis Natrium Silikat Dari Lumpur Lapindo Sebagai Inhibitor Korosi. Jurnal Teknik POMITS. 2, 2.
Aichun, W., Duoxiao, W., Chao, W., Xudong, Z., Zhangsheng, L., Peizhong, F., Xuemei, O., Yinghuai, Q., Hermenegildo, G., Jinan, N. (2019). A Comparative Photocatalytic Study Of TiO2 Loaded On Three Natural Clays With Different Morphologies. Applied Clay Science. 183.
Hadjltaief, H. B., Maria, E. G., Mourad, B. Z., Da Costa, P. (2014). TiO2/Clay As A Heterogeneous Catalyst In Photocatalytic/Photochemical Oxidation Of Anionic Reactive Blue 19. Arabian Journal of Chemistry, 12(7), 1454–1462.
https://doi.org/10.1016/j.arabjc.2014.11.006
Mishra, A., Mehta, A., Sharma, M., Basu, A. (2017). Enhanced Heterogeneous Photodegradation Of VOC And Dye Using Microwave Synthesized TiO2/Clay Nanocomposites: A Comparison Study Of Different Type Of Clays. Journal of Alloys and Compounds. 694, 574-580.
Wang, C., Shi, H., Zhang, P., Li, Y. (2011). Synthesis And Characterization Of Kaolinite/TiO2 Nano-Photocatalysts. Applied Clay Science. 53, 646–649.
Todorova, N., Giannakopouloua, T., Karapati, S., Petridis, D., Vaimakis, T., Trapalis, C. (2014). Composite TiO2/Clays Materials For Photocatalytic NOx Oxidation. Applied Surface Science, 319, 113–120. https://doi.org/10.1016/j.apsusc.2014.07.020
Zhoua, F., Yana, C., Wang, H., Zhou, S. (2017). Komarneni. Sepiolite-TiO2 Nanocomposites For Photocatalysis: Synthesis By Microwave Hydrothermal Treatment Versus Calcination. Applied Clay Science. 146, 246–253.
Gombos, E.D., D. Krakkó, G, Záray, Á. llésa, S. Dóbéa, Szegedia, Á. (2020). Laponite Immobilized TiO2 Catalysts For Photocatalytic Degradation Of Phenols. Journal of Photochemistry & Photobiology A: Chemistry. 387.
Huang, S., Lua, X., Lia, Z., Ravishankara, H., Wanga, J., Wang X. (2018). A Biomimetic Approach Towards The Synthesis Of Tio2/Carbon-Clay As A Highly Recoverable Photocatalyst. Journal of Photochemistry and Photobiology A: Chemistry 351, 131–138.
Dong, Z., Ling, M., Jiang, Y., Han, M., Rena, G., Zhang, J., Ren, X., Li, F., Xue. B. (2019). Preparation And Properties Of TiO2/Illite Composites Synthesized At Different Hydrothermal pH Values. Chemical Physics. 525.
Belessi, V., Lambropoulou, D., Konstantinou, I., Katsoulidis, A., Pomonis, P., Petridis, T. (2007). Albanis. Structure And Photocatalytic Performance Of TiO2/Clay Nanocomposites For The Degradation Of Dimethachlor. Applied Catalysis B: Environmental. 73, 292–299.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Днипровский национальный университет имени Олеся Гончара
This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors reserve the right of attribution for the submitted manuscript, while transferring to the Journal the right to publish the article under the Creative Commons Attribution License. This license allows free distribution of the published work under the condition of proper attribution of the original authors and the initial publication source (i.e. the Journal)
- Authors have the right to enter into separate agreements for additional non-exclusive distribution of the work in the form it was published in the Journal (such as publishing the article on the institutional website or as a part of a monograph), provided the original publication in this Journal is properly referenced
- The Journal allows and encourages online publication of the manuscripts (such as on personal web pages), even when such a manuscript is still under editorial consideration, since it allows for a productive scientific discussion and better citation dynamics (see The Effect of Open Access).