ATOMIC ABSORPTION AND X-RAY FLUORESCENT DETECTION OF CHROMIUM AND COBALT IN PHARMACEUTICALS

Authors

DOI:

https://doi.org/10.15421/jchemtech.v31i1.238921

Keywords:

substances of paracetamol, cofein and analgyne, sample preparation, ultrasound, Triton X-100, atomic absorption spectrometry, X-ray fluorescent analysis, metrological characteristics

Abstract

An influence of SAS (Тriton Х-100) concentration and ultrasound treatment time on the value of analytical signal at atomic absorption detection of Chromium and Cobalt was studied. It was shown that maximal analytical signal is occurred at using Triton Х-100 (ω = 5%) solutions and ultrasound treatment within 15 minutes. Sensibility of Chromium detection was increased in 1,53 times and for Cobalt is in 1,41 times. By atomic absorption and X-ray fluorescent methods the composition of the analytes in substances of paracetamol, cofein and analgyne was determined. By variation of the sample mass and by "injected-found out" method we have proved that systematic error is not significant. The results, obtained by two independent methods were approved according to F- and t-criteria. It was shown that dispersions are homogenous and run of the means is not sufficient and proved by random scatter. A method for the determination of chromium and cobalt in pharmaceutical substances has been developed. The detection limit of cobalt is 0.4 μg / l, chromium 0.5 μg / l.

Author Biography

Аlexandr N. Baklanov, V.N. Karazin Kharkiv National University

Зав. кфедры охраны труда и экологической безопасности Украинской инженерно-педагогической академии, професор кафедрыхимической метрологии Харьковского национального университета имени В.Н. Каразина

References

Siddiqui, M. R., AlOthman, Z. A., Rahman, N. (2017). Analytical techniques in pharmaceutical analysis. Arabian J. Chem. 10, 1409–1421. https://doi.org/10.1016/j.arabjc.2013.04.016

Jwaili, M. (2019). Pharmaceutical applications of gas chromatography. Open J. Appl. Sci. 9, 683–690. https://doi.org/10.4236/ojapps.2019.99055

Yurchenko, O. I., Gubskii, S. M., Chernozhuk, T. V., Baklanov, A. N., Kravchenko, O. A. (2020). [Monitoring of content of sodium, potassium, calcium and magnesium in whey processed products]. J. Chem. Technologies, 28(1), 27–33 (in Ukrainian). https://doi.org/10.15421/082004

Vishnikin, A. B., Sklenařova, H., Solich, P., Petrushina, G. A., Tsiganok, L. P. (2018). Determination of ascorbic acid with Wells-Dawson type molybdophosphate in sequential injection system. Anal. Lett. 44 (1-3), 514–527. https://doi.org/10.1080/00032719.2010.500789

Al-Shwaiyat, M.K.E.A., Miekh, Y.V., Denisenko, T.A., Vishnikin, A.B., Andruch, V., Bazel, Ya.R. (2018). Simultaneous determination of rutin and ascorbic acid in a sequential injection lab-at-valve system. J. Pharm. Biomed. Anal. 149, 179–184. https://doi.org/10.1016/j.jpba.2017.11.006

Busacca, C. A., Fandrick, D. R., Song, J. J., Senanayake, C. H. (2012). Transition metal catalysis in the pharmaceutical industry, in: M. L. Crawley, B. M. Trost (Eds.). Applications of Transition Metal Catalysis in Drug Discovery and Development: An Industrial Perspective, New York, USA: Wiley, 1–24. https://doi.org/10.1002/9781118309872.ch1

Alcalà, M., Blanco, M., Moyano, D., Broad, N. W., O`Brien, N., Friedrich, D., Pfeifer, F., Siesler, H. W. (2013). Qualitative and quantitative pharmaceutical analysis with a novel hand-held miniature near infrared spectrometer. J. Near Infrared Spectrosc. 21, 445–457. https://doi.org/10.1255/jnirs.1084

Kamala, C. T., Balaram, V., Satyanarayanan, M., Kumar, A. K., Subramanyam K. S. V. (2014). Biomonitoring of airborne platinum group elements in urban traffic police officers. Arch. Environ. Contam. Toxicol. 68(3), 2015, 421–431. https://doi.org/10.1007/s00244-014-0114-7

Yuan, X., Chapman, R. L., Wu, Z. (2011). Analytical methods for heavy metals in herbal medicines. Phytochem. Anal. 22, 189–198. https://doi.org/10.1002/pca.1287

Khudyakova, S. N., Vishnikin, A. B., Smityuk, N. M. (2018). A highly selective and sensitive colorimetric chemosensor based on polyurethane foam impregnated with 3-methyl-2, 6-dimercapto-1,4-thiopyrone for on-site preconcentration and determination of palladium(II). Int. J. Environ. Anal. Chem. 98(13), 1253–1273. https://doi.org/10.1080/03067319.2018.1544634

Lewen, N. (2011). The use of atomic spectroscopy in the pharmaceutical industry for the determination of trace elements in pharmaceuticals. J. Pharm. Biomed. Anal. 55(4), 653–661.

https://doi.org/10.1016/j.jpba.2010.11.030

Al-Taeb, S. A., Al-Tayeb, K. A. A., Al-Aseer, A. S., Khan, M. M. (2015). Atomic absorption analysis of toxic heavy metal impurities in various commercial Aspirin formulations. Advances Biochem. 3(1), 9–14. https://doi.org/10.11648/j.ab.20150301.13

Balaram, V., Satyanarayanan, M., Murthy, P. K., Mohapatra C.,. Prasad, K.L. (2013). Quantitative multi-element analysis of cobalt crust from Afanasy-Nikitin seamount in the north central Indian Ocean by inductively coupled plasma time-of-flight mass spectrometry. J. Metrol. Soc. India 28, 63–77. https://doi.org/10.1007/s12647-013-0047-z

Kazantzi, V., Drosaki, E., Skok, A., Vishnikin, A.B., Anthemidis, A. (2019). Evaluation of polypropylene and polyethylene as sorbent packing materials in on-line preconcentration columns for trace Pb(II) and Cd(II) determination by FAAS. Microchem J. 148, 514–520. https://doi.org/10.1016/j.microc.2019.05.033

Kaczala, S., Costa, A. B., Posselt, E. L., Barin, J. S., Flores, E. M. M., Dressler, V. L. (2015). Element determination in pharmaceuticals using direct solid analysis electrothermal vaporization inductively coupled plasma optical emission spectrometry. J. Braz. Chem. Soc. 26(3), 475–483. https://doi.org/10.5935/0103-5053.20150300

Derkach, T. M., Baula, O. P. (2017). Pharmacopoeia methods for elemental analysis of medicines: a comparative study. Bulletin of Dnipropetrovsk National University. Series Chemistry 25(2), 73–83. https://doi.org/10.15421/081711

Vershinin, V. I., Kuleshova, M. P., Isachenko, N. A., Shiligin, P. V. (2013). Methodology of analysis of unseparated mixtures: Error limits in estimating the total analyte concentration recalculated to a standard substance. J. Anal. Chem. 68(6), 477–484. https://doi.org/10.1134/S1061934813060154

Vershinin, V. I., Brilenok, N. S., Tsypko, T. G. (2012). Methodology of the spectrophotometric analysis of organic mixtures: Error of estimating total analyte concentrations taking into account their sensitivity coefficients. J. Anal. Chem. 67(7), 649–654. https://doi.org/10.1134/S1061934812070052

Balaram, V. (2016). Recent advances in the determination of elemental impurities in pharmaceuticals – Status, challenges and moving frontiers. Trends Anal. Chem. 80, 83–95. https://doi.org/10.1016/j.trac.2016.02.001

Bubnič, Z., Urleb, U., Kreft, K., Veber M. (2011). The application of atomic absorption spectrometry for the determination of residual active pharmaceutical ingredients in cleaning validation sample. Drug Development and Industrial Pharmacy 37(3), 281–289. https://doi.org/10.3109/03639045.2010.509726

Chmilenko, F. A., Smityuk, N. M., Baklanov, A. N. (2002) Atomic absorption determination of metals in soils using ultrasonic sample preparation. J. Anal. Chem. 57(4), 372–376.

https://doi.org/10.1023/A:1014946213773

Chmilenko, F. A., Baklanov, A. N., Sidorova, L. P., Lebedeva, E. V., Lebedeva, A.V. (2001). Ultrasonic Intensification of Sample Preparation for the Spectrophotometric Determination of Arsenic in Foodstuffs. J. Anal. Chem. 56(1), 13–16. https://doi.org/10.1023/A:1026755025799

Baklanov, A. N., Chmilenko, F. A. (2001). Use of ultrasound in sample preparation for the determination of mercury species by cold-vapor atomic absorption spectrometry. J. Anal. Chem. 56(7), 641–646. https://doi.org/10.1023/A:1016792205748

Published

2023-04-25