PHASE RELATION STUDIES IN THE La2O3–Lu2O3–Yb2O3 SYSTEM AT 1500 °С

Authors

  • Olga V. Chudinovych Frantsevich Institute for Problems in Materials Science NAS of Ukraine, Ukraine
  • Olexandr I. Bykov Frantsevich Institute for Problems in Materials Science NAS of Ukraine, Ukraine
  • Anatoly V. Samelyuk Frantsevich Institute for Problems in Materials Science NAS of Ukraine, Ukraine

DOI:

https://doi.org/10.15421/jchemtech.v29i4.238943

Keywords:

phase equilibria; Lanthana; Lutetia; Ytterbiа; lattice parameters

Abstract

The phase relation in the La2O3–Lu2O3–Yb2O3 ternary system at 1500 °C were studied by X-ray diffraction (XRD) and scanning electron microscopy in the overall concentration range. The test samples of different compositions have been prepared from nitrate acid solutions by evaporation, drying, and calcinations at 800 ºC. To study phase relationships at 1500 °C the as-repared samples were thermally treated in two stages: at 1100 °C and then at 1500 °C (for 70 h in air).The phase composition of the test samples studied by X-ray diffraction (XRD, DRON-3), microstructural phase and electron microprobe X-ray (Superprobe-733, JEOL, Japan, Palo Alto, CA) analyses. Solid solutions based on various polymorphic forms of original oxides and ordered LaLuO3 (LaYbO3) phases were detected in the system. No new phases were found in the system.  The isothermal section of the phase diagram for the La2O3–Lu2O3–Yb2O3 system has been developed. It was established that in the ternary La2O3–Lu2O3–Yb2O3 system there exist fields of solid solutions based on hexagonal (A) modification of La2O3, cubic (C) modification of Y2O3 and Lu2O3, as well as perovskite-type ordered phases of orthorhombic symmetry LaLuO3 and LaYbO3 (R). The refined lattice parameters of the unit cells for solid solutions and microstructures of the definite field of compositions for the systems solid were determined. The La2O3–Lu2O3–Yb2O3 system forms an infinite series of solid solutions based on the perovskite-type phase. The maximum solubility of Lu2O3 in the R-phase is ~6 mol. % along section Lu2O3 –(50 mol. % La2О3 – 50 mol. % Yb2О3). The region of homogeneity of the R-phase extends from 46 to 56 mol. % La2O3 in the cross section La2O3–(50 mol.% Lu2O3–50 mol.% Yb2O3)

References

Wang, S.F., Zhang, J., Luo, D. W., Gu, F., Tang, D. Y., Dong, Z. L., Que, W. X., Zhang, T. S., Li, S., Kong, L.B. (2013). Transparent ceramics: Processing, materials and applications, Prog. Solid State Chem., 41, 20–54. http://dx.doi.org/10.1016/j.progsolidstchem.2012.12.002

Sanghera, J., Bayya, S., Villalobos, G., Kim, W., Frantz, J., Shaw, B., Sadowski, B., Miklos, R., Baker, C., Hunt, M., Aggarwal, I., Kung, F. (2011). Transparent ceramics for high-energy laser systems, Opt. Mater. 33, 511–518. http://dx.doi.org/10.1016/j.optmat.2010.10.038

Xie, W., Ivanov, M. G., Yavetskiy, R.P., Jiang, N., Shi, Y., Chen, Hao-Hong, Kou, H., Wang, J., Li, J. (2018). Eu:Lu2O3 transparent ceramics fabricated by vacuum sintering of co-precipitated nanopowders, Opt. Mater., 86, 550–561. https://doi.org/10.1016/j.optmat.2018.10.055

Kryzhanovska, O.S., Baumer, V.N., Parkhomenko, S.V., Doroshenko, A.G., Yavetskiy, R.P., Balabanov, A.E., Tolmachev, А.V, Skorik, S.N., Li, J., Kuncser, A. (2019). Formation peculiarities and optical properties of highly-doped (Y0. 86LaO. 09YbO. 05) 2O3 transparent ceramics, Ceram. Inter., 45(13), 16002–16007. https://doi.org/10.1016/j.ceramint.2019.05.111

Jun, A., Yoichi, S., Takunori, T., Akiyama, Ju. (2010). Laser ceramics with rare-earth-doped anisotropic materials, Optics Lett. 35(2), 3598–3600. http://dx.doi.org/10.1364/OL.35.003598

Li, Sh., Zhu, X., Li, J., Yavetskiy, R. P., Ivanov, M. G., Liu, B., Liu, W., Pan, Yu. (2017). Fabrication of 5at. %Yb:(La0.1Y0.9)2O3 transparent ceramics by chemical precipitation and vacuum sintering. Opt. Mater. 71, 56–61. http://dx.doi.org/10.1016/j.optmat.2016.06.017

Zhuohao, X., Shijin, Yu., Li, Yu., Ruan, Sh., Ling Bing Kong, Huang, Q., Huang, Zh., Zhou, K., Su, H., Yao, Zh., Que, W., Liu, Y., Zhang, T., Wang, Ju., Liu, P., Shen, D., Allix, M., Zhang, J. Tang, D. (2020). Materials development and potential applications of transparent ceramics: A review, Mater. S. Eng. 139, 1–66. https://doi.org/10.1016/j.mser.2019.100518

Permin, D.A., Balabanov, S.S., Novikova, A.V., Snetkov, I.L, Palashov, O.V., Sorokin, A.A., Ivanov, M.G. (2019). Fabrication of Yb-doped Lu2O3-Y2O3-La2O3 solid solutions transparent ceramics by self-propagating high-temperature synthesis and vacuum sintering, Ceram. Inter. 45, 522–529. https://doi.org/10.1016/j.ceramint.2018.09.204

Urakami, R., Sato, Yu., Ogushi, M., Takeshi Nishiyama, Goto, K. A. Yamada, K., Teranishi, R., Kaneko, K., Mikito K. (2017). Phase transformation and interface segregation behavior in Si3N4 ceramics sintered with La2O3–Lu2O3 mixed additive, J. Am. Cer. Soc., 100(3), 1231–1240. http://dx.doi.org/10.1111/jace.14663

Proessdorf, A., Niehle, M., Grosse, F., Rodenbach, P., Hanke, M., Trampert, M. (2016). Strain dynamics during La2O3/Lu2O3 superlattice and alloy formation, J. Applied Phys., 119, 215–301.

https://doi.org/10.1063/1.4950875

Tabata, T., Kita, K., Toriumi, A., Amorphous, High-k (2008). LaLuO3 Dielectric Film for Ge MIS Gate Stack, International Conference on Solid State Devices and Materials, Tsukuba, 14-A-14, 14–15.

Muller–Buschbaum Hk., Teske Chr. (1969). Kenntnis der Kristallstruktur von LaYbO3, J. Inorg. General. Chem., 369(93–96), 255–264.

https://10.1002/zaac.19693690316

Muller–Buschbaum, Hk., Teske, Chr. (1969). Untersuchung des System La2O3–Yb2O3, J. Inorg. General. Chem., 369(3–6), 249–254. https://10.1002/ZAAC.19693690315

Toropov, S.A. (1976). [Diagrams of Refractory Oxide Systems]. Nauka, Leningrad. (in Russian).

Coutures, J., Sibieude, F., Foex, M. (1976). Etude a haute température des systèmes formés par les sesquioxydes de lanthane avec les sesquioxydes de lanthanides II. Influence de la trempe sur la nature des phases obtenues à la température ambiante, J. Solid State Chem., 17(4), 377–384. https:// 10.1016/S0022-4596(76)80006-0

Chudinovych, O. V., Andrievskaya, E. R., Bogatyreva, Zh. D., Spasonova, L. M. (2016). [Interaction of lanthanum oxides and ytterbium at a temperature of 1500 oC]. Sovr. Probl. Fiz. Materialoved., 25, 15–28 (in Ukrainian).

Coutures, J., Rouanet, A., Verges, R., Foex, M. (1976). Etude a haute temperature des systems formes par le sesquioxyde de lanthane et les sesquioxydes de lanthanides. I. Diagrammes de phases (1400 oC < T < T Liquide), J. Solid State Chem., 17(1‒2), 172–182. http://dx.doi.org/10.1016/0022-4596(76)90218-8

Traverse, J. P. (1971). Etude du Polymorphisme des sesquioxydes de terres rares, These, Grenoble.

Xiong, K., Robertson, J. (2009). Electronic structure of oxygen vacancies in La2O3, Lu2O3 and LaLuO3, Microelectr. En., 86(7-9), 1672–1675.

https://doi.org/10.1016/j.mee.2009.03.016

Chudinovych, O. V., Zhdanyuk, N.V., [Interaction of lanthanum oxides and lutetium at a temperature of 1500-1600 ⁰C], Ukrainian Chem. J., 86(3) (2020) 19–25 (in Ukrainian). https://doi.org/10.33609/0041-6045.86.3.2020.19-25

Andrievskaya, E. R. (2010). [Phase equilibria in the systems of hafnium, zirconium and yttrium oxides of rare earth elements], Naukova dumka, Kiev. (in Russian).

Shannon, R. D. (1976). Revised effective ionic radii systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr. A. 32(5), 751–754. https://doi.org/10.1107/S0567739476001551

Zinkevich, М. (2007). Thermodynamics of rare earth sesguioxides, Prog. Mater. Sci., 52 597–647. https://doi.org/10.1016/j.pmatsci.2006.09.002

Zinkevich, M., Thermodynamic Database for Rare Earth Sesquioxides, [(accessed on 16 April 2020)]; Available online: https://materialsdata.nist.gov/handle/11256/965.

Pavlik, A., Ushakov, S.V., Navrotsky, A., Benmore, C. J., Weber, R.J.K. (2017). Structure and thermal expansion of Lu2O3 and Yb2O3 up to the melting points, J. Nucl. Mater., 495, 385–391.

https://doi.org/10.1016/j.jnucmat.2017.08.031

Downloads

Published

2022-01-21

Issue

Section

Physical and inorganic chemistry