• Daria S. Kachuk Mykolayiv National Agrarian University, Ukraine
  • Elena V. Mishchenko Kherson National Technical University, Ukraine
  • Elena A. Venger Kherson National Technical University, Ukraine
  • Tatiana A. Popovych Kherson State University, Ukraine



fabric, biocidal protection, preparation, treatment, effect stability


An overview of the scientific literature on the provision of biocidal protection to textile materials intended for the creation of clothing has been made. The range of biocidal preparations used to produce textile materials with antibacterial properties was reviewed. At the same time, attention is paid to natural compounds as the most meeting the requirements for biocides for clothes fabrics. Peculiarities of pectins and lignin as biocidal compounds are defined. Methods which can be used to provide increased resistance of biocidal effect on fabrics are proposed. For water-insoluble biocides, the method used in pigment technologies is acceptable, namely, fixing the biocide on the surface of the fabric with a suitable polymer film, which is formed directly on the textile material during its treatment with the biocide. The use of metal compounds capable of complexing may be acceptable for fixing water-soluble biocides. The metal can form a bond with both the biocide molecule and the fiber polymer, so it is able to act as an intermediary in linking the biocide with the fiber polymer. At the same time, complexes of the polymer fiber-metal-biocide composition can be formed, in which the biocide will act as an organic ligand, due to which the fabric becomes a carrier of biocidal properties.


Gulati, R., Sharma, S., Sharma, R. K. (2021). Antimicrobial textile: recent developments and functional perspective. Polym. Bull., 1–25. doi: 10.1007/s00289-021-03826-3.

Salat, M., Petkova, P., Hoyo, J., Perelshtein, I., Gedanken, A., Tzanov, T. (2018). Durable antimicrobial cotton textiles coated sonochemically with ZnO nanoparticles embedded in an in-situ enzymatically generated bioadhesive. Carbohydr. Polym, 189, 198–203. doi: 10.1016/j.carbpol.2018.02.033.

Adomavičiūtė, E., B.altušnikaitė-Guzaitienė, J., Juškaitė, V., Žilius, M., Briedis, V., Stanys, S. (2018). Formation and characterization of melt-spun polypropylene fibers with propolis for medical applications. The Journal of The Textile Institute, 109(2), 278–284. doi:10.1080/00405000.2017.1341295.

Chatha, S. A. S., Asgher, M., Asgher, R., Hussain, A. I., Iqbal, Y., Hussain, S. M., Bilal, M., Saleem, F., Iqbal, H. M. N. (2019). Environmentally responsive and anti-bugs textile finishes – Recent trends, challenges, and future perspectives. Sci. Total Environ., 690, 667–682. doi: 10.1016/j.scitotenv.2019.06.520.

Mondal, M. I. H. (2021). Antimicrobial Textiles from Natural Resources. Woodhead Publishing, 700.

Emam, H. E. (2019). Antimicrobial cellulosic textiles based on organic compounds. 3 Biotech., 9(1), 1–14. doi: 10.1007/s13205-018-1562-y.

Li, Z., Chen, J., Cao, W., Wei, D., Zheng, A., Guan, Y. (2018). Permanent antimicrobial cotton fabrics obtained by surface treatment with modified guanidine. Carbohydr. Polym., 180, 192–199, doi: 10.1016/j.carbpol.2017.09.080.

Hassan, M. M. (2018). Antimicrobial Coatings for Textiles, In A. Tiwari (Ed.), Handbook of Antimicrobial Coatings, Elsevier, 321-355, doi: 10.1016/B978-0-12-811982-2.00016-0.

Morris, H., Murray, R. (2020). Medical textiles. Textile Progress, 52(1-2), 1–127.


Shahid-ul-Islam, Butola, B.S. (2019). Recent advances in chitosan polysaccharide and its derivatives in antimicrobial modification of textile materials. Int. J. Biol. Macromol. 121, 905–912. doi: 10.1016/j.ijbiomac.2018.10.102.

Zhang, S., Yang, X., Tang, B., Yuan, L., Wang, K., Liu, X., Zhu, X., Li, J., Ge, Z., Chen, S. (2018). New insights into synergistic antimicrobial and antifouling cotton fabrics via dually finished with quaternary ammonium salt and zwitterionic sulfobetaine. Chemical Engineering Journal, 336, 123–132, doi: 10.1016/j.cej.2017.10.168.

Dastjerdi, R., Montazer, M. (2010). A review on the application of inorganic nano-structured materials in the modification of textiles: Focus on anti-microbial properties. Colloids Surf B Biointerfaces, 79(1), 5–18. doi: 10.1016/j.colsurfb.2010.03.029.

Rehan, M., El-Naggar, M. E., Mashaly, H.M., Wilken, R. (2018). Nanocomposites based on chitosan/silver/clay for durable multi-functional properties of cotton fabrics. Carbohydr. Polym. 182, 29–41. doi: 10.1016/j.carbpol.2017.11.007.

Rezaie, A. B., Montazer, M., Rad, M. M. (2018). Environmentally friendly low cost approach for nano copper oxide functionalization of cotton designed for antibacterial and photocatalytic applications. J. Cleaner Prod., 204, 425–436.

doi: 10.1016/j.jclepro.2018.08.337.

Benltoufa, S., Miled, W., Trad, M., Slama, R. B., Fayala, F. (2020). Chitosan hydrogel‐coated cellulosic fabric for medical end-use: Antibacterial properties, basic mechanical and comfort properties. Carbohydr. Polym. 227, 115352. doi: 10.1016/j.carbpol.2019.115352.

El-Khatib E.M., Ali N.F., El-Mohamedy R.S.R. (2020). Influence of Neem oil pretreatment on the dyeing and antimicrobial properties of wool and silk fibers with some natural dyes. Arab J Chem., 13(1), 1094–1104. doi: 10.1016/j.arabjc.2017.09.012.

Freitas, C. M. P., Coimbra, J. S. R., Souza, V. G. L., Sousa, R. C. S. (2021). Structure and applications of pectin in food, biomedical, and pharmaceutical industry: A review. Coatings. 11(8), 922. doi: 10.3390/coatings11080922.

Sari, F. P., Falah, F., Ismayati, M., Lubis, M. A. R., Fatriasari, W., Santoso, E. B., Syafii, W. (2021). Lignin as an active biomaterial: a review. Jurnal Sylva Lestari, 9(1), 1–22. doi: 10.23960/jsl191-22.

Lobo, F., Franco, A. R., Fernandes, E. M., Reis, R. L. (2021). An overview of the antimicrobial properties of lignocellulosic materials. Molecules, 26(6), 1749. doi: 10.3390/molecules26061749.

Kahru, A., Dubourguier, H.-C., Blinova, I., Ivask, A., Kasemets, K. (2008). Biotests and biosensors for ecotoxicology of metal oxide nanoparticles: A minireview. Sensors, 8, 5153–5170. doi: 10.3390/s8085153.

Shahverdy, A. R., Fakhimi, A., Shahverdy, H. R., Minaian, S. (2007). Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine, 3(2), 168–171. doi: 10.1016/j.nano.2007.02.001.

Suprun, N. P., Brychka, S. Ya. (2016). [Formuvannia nanorozmirnykh chastok sribla v netkanykh polotnakh dlia ranovykh pokryttiv na bazi shovkovykh volokon]. Bulletin of the Kyiv National University of Technologies and Design. Technical Science Series, 2, 134–140 (in Ukrainian).

Lytvynova, O. I., Suprun, N. P., Brychka, S. Ia., Balko, O. B. (2016.) [Rozrobka netkanykh tekstylnykh osnov dlia ranovykh pokryttiv na bazi bavovnianykh volokon z nadanymy bakterytsydnymy vlastyvostiamy]. Herald of Khmelnytskyi national university. Technical sciences, 4, 78–81 (in Ukrainian).

Kruhlenko, N. V., Isaiev, S. H., Sumska, O. P., Palii, H. K., Kryzhanovska, A. V. (2009). [Poiednannia farbuvannia ta antymikotychnoi obrobky trykotazhnykh tekstylnykh materialiv]. Eastern-European Journal of Enterprise Technologies, 2(4), 23–25 (in Ukrainian).

Kruhlenko, N. V., Mishchenko, H. V. (2012.) [Zastosuvannia termodynamichnykh kharakterystyk protsesu farbuvannia dlia otsinky stiikosti protyhrybkovykh vlastyvostei panchishno-shkarpetkovykh vyrobiv]. Tovaroznavchiy visnik, 5, 78–86 (in Ukrainian).

Kruhlenko, N. V., Sumska, O. P., Kruhlenko, V. P. (2006). [Oderzhannia ta otsinka protyhrybkovoi obrobky bavovnianoho trykotazhu]. Problemy` legkoj i tekstil`noj promy`shlennosti Ukrainy`, 2(12), 94–97 (in Ukrainian).

El-Naggar, M. E., Soliman, R. A., Morsy, O. M., Abdel-Aziz, M. S. (2020). Nanoemulsion of Capsicum fruit extract as an eco-friendly antimicrobial agent for production of medical bandages. Biocatal. Agric. Biotechnol., 23, 101516, doi: 10.1016/j.bcab.2020.101516.

Hassabo, A. G., El-Naggar, M. E., Mohamed, A. L., Hebeish, A. A. (2019). Development of multifunctional modified cotton fabric with tri-component nanoparticles of silver, copper and zinc oxide. Carbohydr. Polym., 210, 144–156, doi: 10.1016/j.carbpol.2019.01.066.

Rai, M., Yadav, A., Gade, A. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv, 27(1), 76–83. doi: 10.1016/j.biotechadv.2008.09.002.

Srisod, S., Motina, K., Inprasit, T., Pisitsak, P. (2018). A green and facile approach to durable antimicrobial coating of cotton with silver nanoparticles, whey protein, and natural tannin. Prog. Org. Coat., 120, 123–131. doi: 10.1016/j.porgcoat.2018.03.007.

Radetić, M. (2012). Functionalization of textile materials with silver nanoparticles. J Mater Sci, 48(1), 95–107. doi:10.1007/s10853-012-6677-7.

Simončič, B., Klemenčič, D. (2015). Preparation and performance of silver as an antimicrobial agent for textiles: A review. Textile Research Journal, 86(2), 102–223. doi:10.1177/0040517515586157.

Pareek, V., Gupta, R., Panwar, J. (2018). Do physico-chemical properties of silver nanoparticles decide their interaction with biological media and bactericidal action? A review. Mater Sci Eng C Mater Biol Appl, 90, 739–749. doi: 10.1016/j.msec.2018.04.093.

Chen, X., Schluesener, H. J. (2008). Nanosilver: a nanoproduct in medical application. Toxicol Lett, 176(1), 1–12. doi: 10.1016/j.toxlet.2007.10.004.

35. Rujitanaroj, Pim-on, Pimpha, Nuttaporn, Supaphol, Pitt. (2008). Wound-dressing materials with antibacterial activity from electrospun gelatin fiber mats containing silver nanoparticles. Polymer, 49, 4723–4732. doi: 10.1016/j.polymer.2008.08.021.

Wei, X., Luo, M., Li, W., Yang, L., Liang, X., Xu, L., Kong, P., Liu, H. (2012). Synthesis of silver nanoparticles by solar irradiation of cell-free Bacillus amyloliquefaciens extracts and AgNO3. Bioresour Technol, 103(1), 273–278. doi: 10.1016/j.biortech.2011.09.118.

Zavhorodnii, I. V., Dmukhovska, T. M., Sydorenko, M. O., Semenova, N. V. (2013). [Problemy hihiieny pratsi ta bezpeky u vyrobnytstvi ta vykorystanni nanochastynok i nanotekhnolohii]. Medytsyna sohodni i zavtra, 3, 52–56 (in Ukrainian).

Halyk, I. S., Semak, B. D. (2016). [Problemy formuvannia ta otsiniuvannia bezpechnosti nanotekstyliu i odiahu]. Herald of Khmelnytskyi national university. Technical sciences, 4, 71–77 (in Ukrainian).

Schrand, A. M., Rahman, M. F., Hussain, S. M., Schlager, J. J., Smith, D. A., Syed, A. F. (2010). Metal‐based nanoparticles and their toxicity assessment. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2(5), 544–568. doi: 10.1002/wnan.103.

Nazarova, V. V., Mishchenko, H. V. (2008). [Pidvyshchennia stiikosti hidrofobnoi obrobky tkanyn kremniiorhanichnymy spolukamy]. Eastern-European Journal of Enterprise Technologies, 6(4 (36)), 62–65 (in Ukrainian).

Nazarova, V. V., Mishchenko, H. V. (2008). [Do mekhanizmu dii solei d-metaliv v protsesi nadannia tekstylnym materialam hidrofobnoho efektu kremniiorhanichnymy spolukamy]. Eastern-European Journal of Enterprise Technologies, 2(4(36)), 59–62 (in Ukrainian).

Mishchenko, H. V., Mishchenko, O. V., Venher, O. O., Kachuk, D. S., Popovych, T. A. (2019). [Pidvyshchennia hidrolitychnoi stiikosti plivok poliuretanovykh ionomeriv, shcho vykorystovuiutsia dlia pihmentnykh zabarvlen]. Voprosy Khimii i Khimicheskoi Tekhnologii, 5, 84–92. (in Ukrainian). doi: 10.32434/0321-4095-2019-126-5-84-92.

Suprun, N. P., Tarasenko, H. V., Shchutska, H. V., Yakubovska, T. O. (2012). [Vyznachennia antybak-terialnykh vlastyvostei tekstylnykh materialiv dlia pidkladky vzuttia]. Bulletin of the Kyiv National University of Technologies and Design, 2(64), 104–107 (in Ukrainian).

Bajpai, S. K., Ahuja, Sonam, Chand, N., Bajpai, M. (2017). Nano cellulose dispersed chitosan film with Ag NPs/Curcumin: An in vivo study on Albino Rats for wound dressing. Int J Biol Macromol, 104, 1012–1019. doi: 10.1016/j.ijbiomac.2017.06.096.

Dumont, M., Villet, R., Guirand, M., Montembault, A., Delair, T., Lack, S., Barikosky, M., Crepet, A., Alcouffe, P., Laurent, F., David, L. (2018). Processing and antibacterial properties of chitosan-coated alginate fibers. Carbohydr. Polym., 190, 31–42. doi: 10.1016/j.carbpol.2017.11.088.

Yu, J., Pang, Z., Zhang, J., Zhou, H., Wei, Q. (2018). Conductivity and antibacterial properties of wool fabrics finished by polyaniline/chitosan. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 548, 117-124. doi: 10.1016/j.colsurfa.2018.03.065.

Zhao, D., Yu, S., Sun, B., Gao, S., Guo, S., Zhao, K. (2018). Biomedical applications of chitosan and its derivative nanoparticles. Polymers, 10(4), 462. doi: 10.3390/polym10040462.

Khan, A. M., Islam, Md. M., Khan, Md. M. R. (2020). Chitosan incorporation for antibacterial property improvement of jute-cotton blended denim fabric. J Text Inst., 111(5), 660–668, doi: 10.1080/00405000.2019.1657220.

Dhillon, G. S., Kaur, S., Pulicharla, R., Brar, S. K., Cledón, M., Verma, M., Surampalli, R. Y. (2015). Triclosan: Current Status, Occurrence, Environmental Risks and Bioaccumulation Potential. Int J Environ Res Public Health, 12(5), 5657–5684. doi: 10.3390/ijerph120505657.

Popovych, T. A., Mishchenko, H. V., Beschasnyi, S. P. (2021). Antymikrobni vlastyvosti lihninu yak pryrodnoho biotsydu dlia zakhystu tekstyliu. Herald of Khmelnytskyi national university. Technical sciences, 4(299), 142–153 (in Ukrainian). doi: 10.31891/2307-5732-2021-299-4-142-153.

Petrova, Zh. O., Sniezhkin, Yu. F. (2018). [Kompleksoutvoriuiuchi vlastyvosti funktsionalnykh poroshkiv]. Yaderna ta Radiatsiina Bezpeka, 2(78), 59–64 (in Ukrainian).

Noreen, A., Nazli, Z.-i-H., Akram, J., Rasul, I., Mansha, A., Yaqoob, N., Iqbal R., Tabasum, S., Zuber, M., Zia, K. M. (2017). Pectins functionalized biomaterials; a new viable approach for biomedical applications: A review. Int J Biol Macromol, 101, 254–272. doi: 10.1016/j.ijbiomac.2017.03.029.

Gao, D., Li, Y., Lyu, B., Lyu, L., Chen, S., Ma, J. (2019). Construction of durable antibacterial and anti-mildew cotton fabric based on P(DMDAAC-AGE)/Ag/ZnO composites. Carbohydr. Polym., 204, 161–169. doi: 10.1016/j.carbpol.2018.09.087.

Sultan, I., Masood, R., Bibi, I., Sajid, I., Islam, A., Atta, S., Uroos, M., Safa, Y., Bhatti, H. N. (2019). Impact of soft segment size on physicochemical and antimicrobial properties of waterborne polyurethane dispersions for textile application. Prog. Org. Coat. 133, 174–179. doi: 10.1016/j.porgcoat.2019.04.051.

Orel, L. A., Sinelnikov, S. I., Kobrina, L. V., Boiko, V. V., Riabov, S. V. (2017). [Polimerni matrytsi na osnovi alhinatu natriiu: syntez i kinetyka vyvilnennia metoprololu]. Voprosy Khimii i Khimicheskoi Tekhnologii, (6), 32–38 (in Ukrainian).

Orel, L. A., Riabov, S. V., Kobrina, L. V., Honcharenko, L. A. (2016). [Polimery pryrodnoho pokhodzhennia yak nanomatrytsi dlia transportu likarskykh preparative]. Polymer Journal, 38(3), 185–191 (in Ukrainian).

Sachan, N. K., Pushkar, S., Jha, A., Bhattcharya, A. (2009). Sodium alginate: the wonder polymer for controlled drug delivery. J Pharm Res, 2(8), 1191–1199.

Lee, K. Y., Mooney, D. J. (2012). Alginate: properties and biomedical applications. Prog Polym Sci, 37, 106–126. doi: 10.1016/j.progpolymsci.2011.06.003.

Avnesh, K., Yadav, S. K., Yadav, S. C. (2010). Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces, 75(1), 1–18. doi: 10.1016/j.colsurfb.2009.09.001.

Loftsson, T., Duchene, D. (2007). Cyclodextrins and their pharmaceutical applications. Int J Pharm, 329(1-2), 1–11. doi: 10.1016/j.ijpharm.2006.10.044.

Rudrangi, S. R. S., Bhomia, R., Trivedi, V., Vine, G. J., Mitchell, J. C., Alexander, B. D., Wicks, S. R. (2015). Influence of the preparation method on the physicochemical properties of indomethacin and methyl-β-cyclodextrin complexes. Int J Pharm, 479(2), 381–390. doi: 10.1016/j.ijpharm.2015.01.010.

Pawar, S., Shende, P., Trotta, F. (2019). Diversity of β-cyclodextrin-based nanosponges for transformation of actives. Int J Pharm, 565, 333–350. doi: 10.1016/j.ijpharm.2019.05.015.