ELECTROCHEMICAL CHARACTERICTIC OF Ti/Pt AND Ti/Pt-Pd ELECTRODES

Authors

  • Olesia B. Shmychkova Ukrainian State University of Chemical Technology, Dnipro, Ukraine, Ukraine
  • Dmitry V. Girenko Ukrainian State University of Chemical Technology, Dnipro, Ukraine, Ukraine
  • Valentina A. Knysh Ukrainian State University of Chemical Technology, Dnipro, Ukraine, Ukraine
  • Alexander B. Velichenko Ukrainian State University of Chemical Technology, Dnipro, Ukraine, Ukraine

DOI:

https://doi.org/10.15421/jchemtech.v29i3.239282

Keywords:

platinized titanium, palladium, polarization curve, sodium hypochlorite

Abstract

The electrochemical characteristics of Ti/Pt and Ti/Pt-Pd electrodes in oxygen evolution reaction and synthesis of sodium hypochlorite from low concentrated NaCl solutions were investigated in this work. It has been shown that the surface content of palladium has almost no effect on the value of the polarization of the electrode. The calculated effective activation energies of oxygen evolution reaction at E = 1.6 V are 38.11 for Ti/Pt(2.0); 35.27 for Ti/Pt(2.0)-Pd(0.2) and 34.88 kJ mol-1 for heat-treated Ti/Pt(2.0)-Pd(0.2). That is, the palladation of titanium with its subsequent heat treatment reduces the activation energy of oxygen evolution reaction compared to Ti/Pt by 3.33 kJ mol-1. Heat treatment leads to a significant reduction of the Tafel slope in the area of oxygen evolution potentials from 232 for Ti/Pt to 86 mV on Ti/Pt-Pd. CE (NaClO) = 84-93% with CE (NaClO3) less than 0.5 % were obtained on heat-treated Ti/Pt-Pd anodes in 0.15 M NaCl. Servise life of the electrodes involved was 1000 hours without change of activity.

References

Vargas, R., Borras, C., Mendez, D., Mostany, J., Scharifker, B. R. (2016). Electrochemical oxygen transfer reactions: electrode materials, surface processes, kinetic models, linear free energy correlations, and perspectives. A review, J. Solid State Electrochem., 20, 875−893.

http://doi.org/10.1007/s10008-015-2984-7

Lyu, X., Zhang, W.-N., Li, G., Shi, B.-W., Zhang, Y.-N., Chen, H., S.-Ch. Li, Wang, X. (2020). Two-dimensional porous PtPd nanostructure electrocatalysts for oxygen reduction reaction, ACS Appl. Nano Mater., 3(9), 8586–8591. https://doi.org/10.1021/acsanm.0c01900

Patil, S. M., Deshmukh, S. P., Dhodamani, A. G., More, K. V., Delekar, S. D. (2017). Different strategies for modification of titanium dioxide as heterogeneous catalyst in chemical transformations, Curr. Org. Chem., 21(9), 821-833.

https://doi.org/10.2174/1385272820666161013151816

Cai, Y., Feng, Y. P. (2016). Review on charge transfer and chemical activity of TiO2: mechanism and applications, Progr. Surf. Sci., 91(4), 183-202. https://doi.org/10.1016/j.progsurf.2016.11.001

Bacar, S. A., Byzynsky, G., Ribeiro, G. (2016). Synergistic effect on the photocatalytic activity of N-doped TiO2 nanorods synthesized by novel route with exposed (110) facet, J. Alloys Compd., 666, 38-49. https://doi.org/10.1016/j.jallcom.2016.01.112

Huang, M., Yu, Sh., Lin, B., Dong, L., Zhang, F., Fan, M., Wang, L., Yu, J., Deng, Ch. (2014). Influence of preparation methods on the structure and catalytic performance of SnO2-doped TiO2 photocatalysts, Ceramics Int., 40(8), 13305–13312.

https://doi.org/10.1016/j.ceramint.2014.05.043

Knysh, V., Luk’yanenko, T., Shmychkova, O., Amadelli, R., Velichenko, A. (2017). Electrodeposition of composite PbO2-TiO2 materials from colloidal methanesulfonate electrolytes, J. Solid State Electrochem., 21, 537–544. doi: 10.1007/s10008-016-3394-1

Deng, Y., Zhao, R. (2015). Advanced oxidation processes (AOPs) in wastewater treatment, Curr. Pollut. Rep., 1, 167–176.

https://doi.org/10.1007/s40726-015-0015-z

Malato, S., Fernandez-Ibanez, P., Maldonado, M. I., Blanco, J., Gernjak, W. (2009). Decontamination and disinfection of water by solar photocatalysis: recent overview and trends, Catal. Today, 147, 1–59. https://doi.org/10.1016/j.cattod.2009.06.018

Wu, W., Huang, Z.-H., Lim, T.-T. (2014). Recent development of mixed metal oxide anodes for electrochemical oxidation of organic pollutants in water, Appl. Catal., A., 480, 58–78. https://doi.org/10.1016/j.apcata.2014.04.035

Salazar-Banda, G. R., Santos, G. O. S., Gonzaga, I. M. D., Doria, A. R., Eguiluz, K. I. B. (2021). Developments in electrode materials for wastewater treatment, Curr. Opin. Electrochem., 26, 100663.

https://doi.org/10.1016/j.coelec.2020.100663

Walsh, F. C., Ponce de Leon, C. (2014). Versatile electrochemical coatings and surface layers from methanesulfonic acid, Surf. Coat. Tech., 259, 676–697. https://doi.org/10.1016/j.surfcoat.2014.10.010

Walsh, F. C., Ponce de Leon, C. (2014). A review of the electrodeposition of metal matrix composite coatings by inclusion of particles in a metal layer: an established and diversifying coatings technology, Trans. IMF, 92, 83–98. https://doi.org/10.1179/0020296713Z.000000000161

Velichenko, A., Luk'yanenko, T., Shmychkova, O. (2020). Lead dioxide-SDS composites: Design and properties, J. Electroanal. Chem., 873, 114412. https://doi.org/10.1016/j.jelechem.2020.114412

Trassatti, S. (2000). Electrocatalysis: understanding the success of DSA, Electrochim. Acta, 45, 2377–2385. https://doi.org/ 10.1016/S0013-4686(00)00338-8.

Zheng, Y., Chen, F., Liu, X., Guo, X., Ying, Y., Wu, Y., Yi. Wen, Yang, H. (2020). Rational design of PdRu/TiO2 composite material for advancing electrochemical catalysis of methanol oxidation, J. Power Sources, 472, 228517. https://doi.org/10.1016/j.jpowsour.2020.22851

Martinez-Huerta, M. V., Lazaro, M. J. (2017). Electrocatalysts for low temperature fuel cells, Catal. Today, 285, 3–12.

https://doi.org/10.1016/j.cattod.2017.02.015

Shmychkova, O., Zahorulko, S., Girenko, D., Luk’yanenko, T., Dmitrikova, L., Velichenko, A. (2021). Material selection and optimization of conditions for electrooxidation of nitrofurazone: a comparative study of tin and lead dioxides, J. Electrochem. Soc. https://doi.org/10.1149/1945-7111/ac1e58

Velichenko, A. B., Kasian O. I., Luk’yanenko, T. V., Shmychkova, O. B., Demchenko, P. Yu., Gladyshevskii, R. Eu. (2019). Voltametric behavior of platinized titanium electrodes, Journal of Chemistry and Technologies, 27(2), 111–121. https://doi.org/10.15421/081912

Patsai, I. O. MTech PGP-550M potentiostat-galvanostat. http://chem.lnu.edu.ua/mtech/devices.htm#d48.

Anderson, A. B., Neshev, N. M., Sidik, R. A., Shiller, P. (2002). Mechanism for the electrooxidation of water to OH and O bonded to platinum: quantum chemical theory, Electrochim. Acta, 47, 2999–3008. https://doi.org/10.1016/S0013-4686(02)00203-7

Exner, K.S., Over, H. (2019). Beyond the rate-determining step in the oxygen evolution reaction over a single-crystalline IrO2(110) model electrode: Kinetic scaling relations, ACS Catal., 9, 6755–6765. https:/doi.org/10.1021/acscatal.9b01564

Girenko, D., Shmychkova, O., Velichenko, A. (2019). Electrooxidation of chloride-ions on Ti/Pt anodes, Voprosy Khimii i Khimicheskoi Tekhnologii, 6, 39–46. https://doi.org/10.32434/0321-4095-2019-127-6-39-46

Girenko, D., Shmychkova, O., Velichenko, A. (2020). Influence of Ti/Pt electrodes history on its electrochemical properties during electrolysis of NaCl, Voprosy Khimii i Khimicheskoi Tekhnologii, 1, 18–24. https://doi.org/10.32434/0321-4095-2020-128-1-18-24

Girenko, D., Shmychkova, O., Velichenko, A. (2020). Electrolysis of sodium chloride solutions on Ti/Pt anodes under current reversal conditions, Voprosy Khimii i Khimicheskoi Tekhnologii, 2, 36–43. https://doi.org/10.32434/0321-4095-2020-129-2-36-43

Downloads

Published

2021-10-27