EFFECT OF HEAT PUMP TEMPERATURE ON THE PHYSICAL PROPERTIES, BIOACTIVE COMPOUNDS AND ANTIOXIDANT CAPACITY OF BEETROOTS

Authors

DOI:

https://doi.org/10.15421/jchemtech.v29i4.240470

Keywords:

beetroot; heat pump drying; betalain; rehydration ratio; total flavonoid; antioxidant capacity

Abstract

Beetroot is a widely consumed vegetable in the world. However, it is easily dehydrated and perishable, causing great waste and financial losses. Heat pump drying is an efficient and low-cost method, widely used in temperature sensitive vegetables and fruits processing to produce new products and extend the shelf life of food. The purpose of this study was to investigate the influence of heat pump drying temperatures ranging from 45 to 65°C on the physical properties, bioactive compounds and antioxidant capacity of dried beetroots. The results showed that increasing heat pump drying temperature from 45 to 65°C could significantly decrease drying time and rehydration ratio of dried beetroots (p < 0.05). The beetroots dried at 50°C showed the smallest total color difference (∆E) in comparison to freeze-dried beetroots, and there was no significant effect on the ∆E of beetroots dried at different drying temperatures (p > 0.05). The content of bioactive compounds in dried beetroots, including betacyanin, betaxanthin, ascorbic acid, total phenolic and total flavonoid, all increased with increasing of drying temperatures from 45 to 65°C and showed the highest values at 65°C. Beside this, the 2,2′-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging ability and ferric reducing antioxidant power (FRAP) values of dried beetroots had the same tendencies with drying temperature, significantly increased with drying temperature and both reached the maximum values at 65°C. However, the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging ability decreased significantly with the increase of drying temperature (p < 0.05). As to bioactive compounds and antioxidant capacity of dried beetroots, it is considered that 65°C is the optimal temperature for heat pump drying of beetroots.

References

Fu, Y., Shi, J., Xie, S. Y., Zhang, T. Y., Olugbenga P. Soladoye., & Rotimi, E. Aluko. (2020). Red beetroot betalains: Perspectives on extraction, processing, and potential health benefits. Journal of Agricultural and Food Chemistry, 68 (42), 11595–11611.

https://doi.org/10.1021/acs.jafc.0c04241

Hadipour, E., Taleghani, A., Tayarani-Najaran, N., & Tayarani-Najaran, Z. (2020). Biological effects of red beetroot and betalains: A review. Phytotherapy Research, 34(8), 1847-1867.

https://doi.org/10.1002/ptr.6653

Kanner, J., Harel, S., & Granit, R. (2001). Betalains-A new of dietary cationized antioxidants. Journal of Agricultural and Food Chemistry, 49(11), 5178–5185.

https://doi.org/10.1021/jf010456f

Chhikara, N., Kushwaha, K., Sharma, P., Gat, Y., & Panghal, A. (2019). Bioactive compounds of beetroot and utilization in food processing industry: A critical review. Food Chemistry, 272, 192–200. https://doi.org/10.1016/j.foodchem.2018.08.022

Paciulli, M., Medina-Meza, I. G., Chiavaro, E., & Barbosa-Canovas, G. V. (2016). Impact of thermal and high pressure processing on quality parameters of beetroot (Beta vulgaris L.). LWT-Food Science Technology, 68, 98–104.

https://doi.org/10.1016/j.lwt.2015.12.029

Madhava, N. M. M., Vedashree, M., Satapathy, P., Khanum, H., Ramsamy, R., & Hebbar, H. U. (2016). Effect of drying methods on the quality characteristics of dill (Anethum graveolens) greens. Food Chemistry, 192, 849–856.

https://doi.org/10.1016/j.foodchem.2015.07.076

Jin, W., Zhang, M., & Shi, W. (2018). Evaluation of ultrasound pretreatment and drying methods on selected quality attributes of bitter melon (Momordica charantia L.). Drying Technology, 37(3), 387–396.

https://doi.org/10.1080/07373937.2018 .1458735

Aktaşa, M., Ceylan, I., & Yilmaz, S. (2009). Determination of drying characteristics of apples in a heat pump and solar dryer. Desalination, 239(1–3), 266–275.

https://doi.org/10.1016/j.desal.2008.03.023

Hii, C. L., Law, C. L., & Suzannah, S. (2012). Drying kinetics of the individual layer of cocoa beans during heat pump drying. Journal of Food Engineering, 108(2), 276–282.

https://doi.org/10.1016/j.jfoodeng.2011.08.017

Chapchaimoh, K., Wiset, L., Poomsa-Ad, N., & Morris, J. (2016). Thermal characteristics of heat pump dryer for ginger drying. Applied Thermal Engineering, 95, 491–498.

https://doi.org/10.1016/j.applthermaleng.2015.09.025

Queiroz, R., Gabas, A. L., & Telis, V. R. N. (2004). Drying kinetics of tomato by using electric resistance and heat pump dryers. Drying Technology, 22(7), 1603–1620.

https://doi.org/10.1081/DRT-200025614

Aktaş, M., Taşeri, L., Şevik, S., Gülcü, M., Seçkin, G. U., & Dolgun, E. C. (2019). Heat pump drying of grape pomace: performance and product quality analysis. Drying Technology, 37(14), 1766–1779.

https://doi.org/10.1080/07373937.2018.1536983

García-Toledo, J. A., Ruiz-López, I. I., Martínez-Sánchez, C. E., Rodríguez-Miranda, J., Carmona-García, R., Torruco-Uco, J. G., Ochoa-Martinez, L. A., & Herman-Lara, E. (2016). Effect of Osmotic Dehydration on the Physical and Chemical Properties of Mexican Ginger (Zingiber officinale var. Grand Cayman). CyTA-Journal of Food, 14(1), 27–34.

https://doi.org/10.1080/19476337.2015.1039068

Yu, Y. Y., Tang, D. B., Wen, J., Wu, J. J., Yu, Y. S., An, K. J., & Zou, Y. (2020). The influence of heat pump temperature on drying rate and quality of white radish. Food and Machinery, 36(02), 211–214. (In Chinese)

https://doi.org/10.13652/j.issn.1003-5788.2020.02.039

Coy-Barrera, E. (2020). Analysis of betalains (betacyanins and betaxanthins), Recent Advances in Natural Products Analysis, Elsevier: Amsterdam, The Netherlands, 593–619.

https://doi.org/10.1016/B978-0-12-816455-6.00017-2

Stintzing, F. C., Herbach, K. M., Mosshammer, M. R., Carle, R., Yi, W., Sellappan, S., Akoh, C. C., Bunch, R., & Felker, P. (2005). Color, betalin pattern, and antioxidant properties of cactus pear (Opuntia spp.) clones. Journal of Agricultural and Food Chemistry, 53(2), 442–451.

https://doi.org/10.1021/jf048751y

Huang, B. H., Luo, Z. M., Fang Y. X., & Lin J. L. (1999). Spectrophotometric determination of vitamin C in fruits and vegetables by Fe(Ⅱ)–1, 10–phenanthroline–BPR system. Journal of World of Chemistry, 40(6), 39–41.

Alvarez-Parrilla, E., Rosa, L. A. de la., Amarowicz, R., & Shahidi, F. (2011). Antioxidant activity of fresh and processed jalapeño and serrano peppers. Journal of Agricultural and Food Chemistry, 59(1), 163–173.

https://doi.org/10.1021/jf103434u

Jia, Z. S., Tang, M. C., & Wu, J. M. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64(4), 555–559.

https://doi.org/10.1016/S0308-8146(98)00102-2

Vallespir, F., Carcel, J. A., Marra, F., Eim,V. S., & Simal, S. (2018). Improvement of mass transfer by freezing pre-treatment and ultrasound application on the convective drying of beetroot (Beta vulgaris L.). Food and Bioprocess Technology, 11(1), 72–83.

https://doi.org/10.1007/s11947-017-1999-8

Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28, 25–30.

https://doi.org/10.1016/S0023-6438(95)80008-5

Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice, E. C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9–10), 1231–1237.

https://doi.org/10.1016/S0891-5849(98)00315-3

Benzie, I. F. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical biochemistry, 239(1), 70–76.

https://doi.org/10.1006/abio.1996.0292

Salima, C., Lila, B. M., Javed I., Sabrina, Z., Sait, S., & Gavin, W. (2019). Effect of different drying temperatures on the composition and antioxidant activity of ginger powder. The Annals of the University Dunarea de Jos of Galati. Fascicle VI–Food Technology. 43(2), 125-142.

https://doi.org/10.35219/foodtechnology.2019.2.09

Macedo, L. L., & Vimercati, W. C., Araújo, C. da S., Saraiva, S. H., Teixeira, L. J. Q. (2020). Effect of drying air temperature on drying kinetics and physicochemical characteristics of dried banana. Journal of Food Process Engineering, 43(9), e13451.

https://doi.org/10.1111/jfpe.13451

Abers, J. E., & Wrolstad, R. E. (1979). Causative factors of color deterioration in strawberry preserves during processing and storage. Journal of Food Science, 44(1), 75-81.

https://doi.org/10.1111/j.1365-2621.1979.tb10008.x

Lund, M. N., & Ray, C. A. (2017). Control of Maillard reactions in foods: Strategies and chemical mechanisms. Journal of Agricultural and Food Chemistry, 65(23), 4537–4552.

https://doi.org/10.1021/acs.jafc.7b00882

Srikanth, K. S., Sharanagat, V. S., Kumar, Y., Bhadra, R., Singh, L., Nema, P. K., & Kumar, V. (2019). Convective drying and quality attributes of elephant foot yam (Amorphophallus paeoniifolius). LWT - Food Science and Technology, 99, 8–16.

https://doi.org/10.1016/j.lwt.2018.09.049

Kumar, Y., Sharanagat, V. S., Singh, L., & Nema, P. K. (2020). Convective drying of spine gourd (Momordica dioica): Effect of ultrasound pre-treatment drying characteristics, color, and texture attributes. Journal of Food Processing and Preservation, 44(9), e14639.

https://doi.org/10.1111/jfpp.14639

Gokhale, S. V., & Lele, S. S. (2011). Dehydration of red beetroot (Beta vulgaris) by hot air drying: Process optimization and mathematical modeling. Food Science and Biotechnology, 20(4), 955–964.

https://doi.org/10.1007/s10068-011-0132-4

Hu, Q. G., Zhang, M., Mujumdar, A. S., Du, W. H., & Sun, J. C. (2006). Effect of different drying methods on the quality changes of Granular Edamame. Drying Technology, 24(8), 1025–1032.

https://doi.org/10.1080/07373930600776217

Ravichandran, K., Saw, N. M. M. T., Mohdaly, A. A. A., Gabr, A. M. M., Kastell, A., Riedel, H., Cai, Z. Z., Knorr, D., & Smetanska, I. (2013). Impact of processing of red beet on betalain content and antioxidant activity. Food Research International, 50(2), 670–675.

https://doi.org/10.1016/j.foodres.2011.07.002

Herbach, K. M., Stinzing, F. C., & Carle, R. (2004). Impact of thermal treatment on color and pigment pattern of red beet (Beta vulgaris L.) preparations. Journal of Food Science, 69(6), C491–C498. https://doi.org/10.1111/j.1365-2621.2004.tb10994.x

Gokhale, S. V., & Lele, S. S. (2014). Betalain content and antioxidant activity of Beta vulgaris: Effect of hot air convective drying and storage. Journal of Food Processing and Preservation, 38(1), 585–590.

https://doi.org/10.1111/jfpp.12006

Kubra, I. R., & Rao, L. J. M. (2012). Microwave drying of ginger (Zingiber Officinale Rosco) and its effect on polyphenolic content and antioxidant activity. International Journal of Food Science and Technology, 47(11), 2311-2317.

Downloads

Published

2022-01-21