• Vladislav H. Primenko Dnipro Faculty of Management and Business of Kyiv University of Culture, Ukraine
  • Kateryna A. Sefikhanova Dnipro Faculty of Management and Business of Kyiv University of Culture, Ukraine
  • Anna O. Helikh Summy National Agrarian University, Ukraine
  • Mykola P. Golovko Kharkiv State University of Food Technology and Trade, Ukraine
  • Olha O. Vasylenko Summy National Agrarian University, Ukraine



lactose; milk whey; microstructure; granulometric composition; selenium-protein dietary supplements


Aim. To substantiate the choice of raw materials for selenium-protein dietary supplements, namely the type of whey as a matrix for their production, and to determine the subsequent possibility of using additives in the technology of culinary products for special purposes. Methods. The determination of the structural characteristics of whey lactose samples was carried out using a Quattro ESEM electron microscope at a magnification of 10,000 and 1,000 times. The analysis of the quantitative and dimensional characteristics of the investigated particles was carried out using the MS Excel software. Results. The method and mode of whey thickening have been substantiated, and the homogeneity analysis of lactose-free and lactose-containing whey samples under different thickening modes has been carried out. The ratio of the constituents of selenium-protein dietary supplements and the nature of the interaction of the components with each other have been determined. Conclusions. Analysis of the structure of model systems with the use of low-lactose milk whey and selenium salts condensed by the contact method made it possible to establish the rational content of the latter in the range of 0.0087...0.0176 %, at which the formation of a homogeneous finely dispersed microstructure is noted. This allows foreseeing high technological properties, stability during storage and use of done selenium-protein dietary supplements.


Bella, A. D., Müller, M., Danani, A., Soldati, L., Anomeric, R. B. (2019). Effect of Lactose Pseudopolymorphic Transition on the Aerosolization Performance of Drug/Carrier Mixtures. Pharmaceutics. 11, 576, 1–13. doi:10.3390/pharmaceutics11110576.

Trpělková, Ž., Hurychová, H., Ondrejček, P., Svěrák, T., Kuentz, M., Šklubalová, Zd. (2019). Predicting the angle of internal friction from simple dynamic consolidation using lactose grades as model. Journal of Pharmaceutical Innovation. 13.

Nokhodchi, A.; Kaialy, W. Dry powder inhalers: Influence of lactose physicochemical properties on aerosol performance. Available online:

publication/222712876_Dry_powder_inhalers_influence_of_lactose_physicochemical_properties_on_aerosol_performance (accessed on 15 April 2020).

Carpin, M., Bertelsen, H., Dalberg, A., Bech, J.K., Risbo, J., Schuck, P., Jeantet, R. (2017). How does particle size influence caking in lactose powder?, Journal of Food Engineering. 1-7.

Butscher, A., Bohner, M., Doebelin, N., Galea, L., Loeffel, O., Müller, R. (2012). Moisture based three-dimensional printing of calcium phosphate structures for scaffold engineering, Acta Biomaterialia.

Pazesh, S., Gråsjö, J., Berggren, J., Alderborn, G. (2017). Comminution-amorphisation relationships during ball milling of lactose at different milling conditions. International Journal of Pharmaceutics. 528, 215–227.

Yeow, S. T., Shahar, A., Aziz, N. A., Anuar, M. S., Yusof, Y. A., Taip, F. S. (2011). The influence of operational parameters and feed preparation in a convective batch ribbon powder mixer. Drug Design, Development and Therapy. 5, 465–469.

Muzzio, F. J., Llusa, M., Goodridge, C. L., Duong, N., Shen, E. (2008). Evaluating the mixing performance of a ribbon blender. Powder Technology. 186, 247–254.

Vinogradova, Yu. V., & Gnezdilova, A. I. (2018). [Teoreticheskie i prakticheskie aspekty processa kristallizaciya laktozy v proizvodstve sgushchennykh molochnykh konservov s sakharom]. Molochnokhozyajstvennyj vestnik. 3 (31). 79–90. (in Russian) doi:10.24411/2225-4269-2018-00023.

Ghnicevych V. A., Ghonchar Ju. M., & Romanenko R. P. (2019). [Doslidzhennja mikrostruktury produktiv pererobky molochnoji syrovatky]. In O. I. Cherevko (Ed.), Proghresyvni tekhnika ta tekhnologhiji kharchovykh vyrobnyctv restorannogho ghospodarstva i torghivli (2 (30), pp. 72-83). Kharkiv, Ukraine : KhSUFT&T. (in Ukrainian).

Rudén, J., Frenning, G., Bramer, T., Thalberg, K., Alderborn, G. (2018). Relationships between surface coverage ratio and powder mechanics of binary adhesive mixtures for dry powder inhalers. Int. J. Pharm. 541, 143–156.

Della Bella, A., Müller, M., Soldati, L., Elviri, L., Bettini, R. (2016). Quantitative determination of micronization-induced changes in the solid state of lactose. Int. J. Pharm. 505, 383–393.

Pazesh, S., Lazorova, L., Berggren, J., Alderborn, G., Gråsjö, J. (2016). Considerations on the quantitative analysis of apparent amorphicity of milled lactose by Raman spectroscopy. Int. J. Pharm. 511, 488–504.

Tan, B. M. J., Chan, L. W., Heng, P. W. S. (2016). Improving dry powder inhaler performance by surface roughening of lactose carrier particles. Pharm. Res. 33, 1923–1935.

Carpin, M., Bertelsen, H., Bech, J. K., Jeantet, R., Risbo, J., Schuck, P. (2016). Caking of lactose: a critical review. Trends Food Sci. Technol. 53, 1–12.

Carpin, M., Bertelsen, H., Dalberg, A., Roiland, C., Risbo, J., Schuck, P., Jeantet, R. (2017). Impurities enhance caking in lactose powder. J. Food Eng. 198, 91–97.

Fazullina, O. F., Lyndina, M. I. (2018). [Razrabotka sostava i tekhnologii polucheniya biologicheski aktivnoj dobavki k pishche na osnove lekarstvennykh rastenij]. Polzunovskij vestnik., 4, 89–94. (in Russian).

Prymenko, V. H. (2019). Technologies of Seleniumprotein dietary supplements and sauces with their use [Tehnologii' dobavok dijetychnyh selen-bilkovyh ta sousiv z i'h vykorystannjam], Kharkiv. (in Ukrainian).

[Sposіb oderzhannya bіologіchno aktivnoї dobavki «Neoselen»] pat. 104883 Ukraina. (in Ukrainian).

[Sposіb oderzhannya bіologіchno aktivnoї dobavki «Sivoselen Plyus»] pat. 99720 Ukraina. (in Ukrainian).

Prymenko, V. H., Sefikhanova, K. A. (2020). Technologies of selenium-protein dietary supplements and sauces with their use. Prospects and priorities of research in science and technology: Collective monograph. Riga: Izdevnieciba «Baltija Publishing», 2, 199–218.

Prymenko, V. H., Helikh, A. O., Stepanova, T. M. (2021). Influence of Se-lactoalbumin on functional and technological properties of Selenium-protein dietary supplements. Journal of Chemistry and Technologies. 29(1), 164–172.

Polyanskij, K. K., Rudakov, O. B., Saranov, I. A. (2019). [Evaluation of the particle size distribution of lactose crystals]. Pererabotka moloka – Milk processing. 10 (240), 72–75. (in Russian).

Polyanskij, K. K. (2018). [Kristallizaciya laktozy (tekhnologiya i apparaturnoe oformlenie)] : monograph. Voronezh : Publishing and Printing Center «Scientific Book». 92 p. (in Russian).

Nilova, L. P., Kambulova, E. V. (2019). [Influence of heat treatment on the chemical composition and properties of condensed milk with sugar]. Vestnik Yuzhno-Ural'skogo gosudarstvennogo universiteta. Eda i biotekhnologii – Bulletin of the South Ural State University. Food and biotechnology (Iss. 7, no. 2, pp. 54–61). Chelyabinsk, Russian Federation : SUSU. (in Russian).

Smirnov, S. O., Fazullina, O. F. (2018). [Formulation development and technology for obtaining a biologically active food supplement using natural ingredients]. Tekhnika i tekhnologiya pishchevykh proizvodstv – Technique and technology of food production, 48(3), 105–114. (in Russian).

Vinogradova YU. V., Gnezdilova A. I., Shevchuk V. B. (2019). [Concentrated dairy products with sugar for the confectionery industry]. Molochnohozyajstvennyj vestnik – Dairy Bulletin, 2(34), 82-91. (in Russian). doi:10.24411/2225-4269-2019-00018.

Zhalilova U. A., Tadzhieva A. D., Fozilzhonova M. SH., Malikova G. YU., Norkulova M. SH. (2019). [Development of the composition and technology of capsules "Glutasmar"]. Science Time, 4(64), 47-50. (in Russian).