SILICA SULFURIC ACID CATALYZED SYNTHESIS OF PYRIMIDINES AND NEW FUSED PYRIMIDO-PURINES via BIGINELLI REACTION

Authors

DOI:

https://doi.org/10.15421/jchemtech.v29i4.241661

Keywords:

Dihydropyrimidine-2-one, purines, multicomponent reaction, Biginelli reaction, silica sulfuric acid, nucleobases

Abstract

Studies on strategies for the synthesis of pyrimidine derivatives have generated great interest in the chemistry of heterocyclic compounds due to the pharmacological properties of pyrimidines. The most common method for pyrimidine skeleton synthesis is the traditional synthetic approach using the multicomponent Biginelli reaction. A convenient and efficient one-pot three-component synthesis of a new class of pyrimido[1,2-g]purine-7,8-dicarboxylate, pyrimido[2,1-e]purine-8,9-dicarboxylate, and pyrimido[1,6-a]pyrimidine-3,4-dicarboxylate under Biginelli reaction conditions has been described. These compounds were prepared by condensation of sodium diethyl oxalacetate, substituted aromatic aldehyde, and nucleobase (adenine, guanine, or cytosine) using hydrochloric acid, mild heterogeneous solid silica sulfuric acid (SSA), or p-toluenesulfonic acid (TsOH) as a catalyst. The chemical structures of the synthesized compounds were confirmed using infrared spectroscopy (IR), proton (1H) nuclear magnetic resonance (NMR), and mass spectrometric analysis.

References

Holmgrenm, A. V.; Wennermm, W. Coll.V, 1963, 4: 23.

Webb, M.E.; Marquet, A.; Mendel, R.R.; Rébeillé, F.; Smith, A.G. Nat. Prod. Rep., 2007, 24 (5): 988-1008. doi: 10.1039/b703105j

Horwitz, J.P.; Chua, J.; Noel, M. J. Org. Chem., 1964, 29 (7): 2076-2078. doi: 10.1021/jo01030a546

Chang, S.K.; Hamilton, A.D. J. Am. Chem. Soc., 1988, 110 (4): 1318-1319. doi: 10.1021/ja00212a065

Kumar, S.; Narasimhan, B. Chem. Cent. J., 2018, 12 (1): 38-68. doi: 10.1186/s13065-018-0406-5

Abbas, N.; Matada, G.S.P.; Dhiwar, P.S.; Patel, S.; Devasahayam, G. Anticancer. Agents Med. Chem., 2021, 21 (7): 861-893. doi: 10.2174/1871520620666200721104431

Jain, K.S.; Chitre, T.S.; Miniyar, P.B.; Kathiravan, M.K.; Bendre, V.S.; Veer, V.S.; Shahane, S.R.; Shishoo, C.J. Curr. Science. India, 2006, 90 (6) : 793-803.

Gatta, F.; Gradoni, L.; Lupardini, E.; Gramiccia, M.; Orsini, S. Farmaco, 1991, 46 (1) : 75-84. PMID: 2054043

Khalifa, N.M.; Abdel-Rahman, A-A.H.; Abd-Elmoe, S.I.; Fathalla, O.A.; El-Gwed, A.A. Res. Chem. Intermed., 2015, 41(4): 2295-2305. doi: 10.1007/s11164-013-1347-1

Laddha, S.S.; Bhatnagar, S.P. Future Med. Chem., 2010, 2 (4): 565-573. doi: 10.4155/fmc.10.16, PMID: 21426007

Kumar, S.; Deep, A.; Narasimhan, B. Curr. Bioact. Compd., 2019, 15 (3): 289-303. doi: 10.2174/1573407214666180124160405

Salem, M.S.; Farhat, M.; Errayes, A.O.; Madkour, H.M. Chem. Pharm. Bull. (Tokyo), 2015, 63 (11): 866-872. doi: 10.1248/cpb.c15-00452 PMID: 26521851

Nassar, E.; El-Badry, Y.A.; El Kazaz, H. Chem. Pharm. Bull. (Tokyo), 2016, 64 (6): 558-563. doi: 10.1248/cpb.c15-00922 PMID: 27250790

Panahi, F.; Yousefi, R.; Mehraban, M.H.; Khalafi-Nezhad, A. Carbohydr. Res., 2013, 380: 81-91. doi: 10.1016/j.carres.2013.07.008 PMID: 23978663

Roopan, S.M.; Sompalle, R. Synth. Commun., 2016, 46 (8): 645-672. doi: 10.1080/00397911.2016.1165254

Mamaghani, M.; Tabatabaeian, K.; Araghi, R.; Fallah, A.; Hossein Nia, R. Org. Chem. Inter., 2014.

Naik, T.A.; Chikhalia, K.H. J. Chem., 2007. doi: 10.1155/2007/507590

Biginelli, P. Chem. Ber., 1891, 24 (1) : 1317-1319. doi : 10.1002/cber.189102401228

Dilmaghani, K. A.; Zeynizadeh, B.; Yari, M. Phosphorus, Sulfur, and Silicon and the Related Elements., 2009, 184 (7): 1722-1728. doi: 10.1080/10426500802293153

Salehi, P.; Dabiri, M.; Zolfigol, M. A.; Bodaghi Fard, M. A. Tetrahedron. Lett., 2003, 44 (14): 2889-2891. doi: 10.1016/S0040-4039(03)00436-2

Kulkarni, M. G.; Chavhan, S. W.; Shinde, M. P.; Gaikwad, D. D.; Borhade, A. S.; Dhondge, A. P.; Shaikh, Y. B.; Ningdale, V. B.; Desai, M. P.; Birhade, D. R. Beilst. J. Org. Chem. 2009, 5 (4). doi : 10.3762/bjoc.5.4

Radha, R. V.; Shrinivas, N.; Kishan, R.; Kulkarni, S. J.; Raghavan, K. V. Green Chem. 2001, 3 (6): 305-306.

Dehamchia, M.; Régaïnia, Z. J. Sulfur Chem., 2013, 34 (3): 242-249. doi: 10.1080/17415993.2012.729589

Dehamchia, M.; Régainia, Z. ISRN Org. Chem., 2012, 2012, 810938. doi: 10.5402/2012/810938 PMID: 24052851

Kolosov, M.A.; Al-Ogaili, M.J.K.; Parkhomenko, V.S.; Orlov, V.D. Chem. Heterocycl. Compd., 2014, 49 (10): 1484-1489. doi: 10.1007/s10593-014-1399-1

Rajendra, V.P.; Jagdish, U.C.; Dipak, S.D.; Vaishali, S.S.; Anil, G.B. ACS Comb. Sci., 2019, 21 (3): 105-148. doi: 10.1021/acscombsci.8b00120 PMID: 30645098

Sheibani, H.; Seifi, M.; Bazgir, A. Synth. Commun., 2009, 39 (6): 1055-1064. doi: 10.1080/00397910802474982

Gaikwad, D.D. Orbital. Elec. J. Chem., 2013, 5: 17-22.

Suwito, H.; Zulianto, L.; Ul Haq, K.; Erwanto, E.; Abdulloh, A.; Novi Kristanti, A.; Indriani, I. Molbank, 2017, 2017, M946. doi: 10.3390/M946

Moghanian, H.; Fard, M.A.B.; Mobinikhaledi, A.; Ahadi, N. Res. Chem. Intermed., 2018, 44: 4083-4101. doi: 10.1007/s11164-018-3357-5

Salehi, P.; Zolfigol, M.A.; Shirini, F.; Baghbanzadeh, M. Curr. Org. Chem., 2006, 10(17): 2171-2189. doi: 10.2174/138527206778742650

Baghernejad, B. Mini Rev. Org. Chem., 2011, 8 (1): 91-102. doi: 10.2174/157019311793979963

Downloads

Published

2022-01-21