• Marta M. Bukartyk Lviv Polytechnic National University, Ukraine
  • Nataliia G. Nosova Lviv Polytechnic National University, Ukraine
  • Olha V. Maikovych Lviv Polytechnic National University, Ukraine
  • Nataliia M. Bukartyk Lviv Polytechnic National University, Ukraine
  • Anna V. Stasiuk Lviv Polytechnic National University, Ukraine
  • Iryna A. Dron Lviv Polytechnic National University, Ukraine
  • Nataliia V. Fihurka Lviv Polytechnic National University, Ukraine
  • Semen V. Khomyak Lviv Polytechnic National University, Ukraine
  • Dmytro D. Ostapiv Institute of Animal Biology NAAS, Ukraine
  • Vasyl V. Vlizlo Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies, Ukraine
  • Volodymyr Ya. Samaryk Lviv Polytechnic National University, Ukraine
  • Serhii M. Varvarenko Lviv Polytechnic National University, Ukraine



hydrogel, sodium alginate, gelatin, polymerization, wound healing, calcium


The work presents the studies on the synthesis of hydrogel material based on the natural biopolymers (sodium alginate and gelatin) for medical applications. Sodium alginate and gelatin are biocompatible, non-toxic, biodegradable polymers and renewable raw materials. Combined alginate gelatin hydrogels are formed due to the formation of a hydrogel network by simultaneous cross-linking of calcium ions of sodium alginate macromolecules, gelatin, and macro-chains of rarely cross-linked polyacrylic acid. The optimal synthesis conditions (reagent concentrations, the molar ratio of calcium ions to the number of carboxyl groups Ca2+/COOH-) of the combined hydrogels with satisfactory physicochemical and mechanical properties are determined. The dependences of the mechanical properties of alginate-gelatin hydrogels on the degree of swelling indicate a wide range of their satisfactory performance characteristics. The studies on sorption and release of analgesics (lidocaine and novocaine) show long-term release of drugs and allow predicting the possibility of their prolonged delivery. In vitro cytotoxicity analysis proved the absence of toxic effect on living cells. The results suggest that the obtained combined alginate-gelatin hydrogels are a promising material for producing hydrogel dressings for wound care.

Author Biographies

Nataliia G. Nosova, Lviv Polytechnic National University

D.Sc. in Engineering, Senior Research Officer

Nataliia M. Bukartyk, Lviv Polytechnic National University

Research Officer

Dmytro D. Ostapiv, Institute of Animal Biology NAAS

D.Sc. in Agricultural, Senior Research Officer, Head of the laboratory

Vasyl V. Vlizlo, Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies

D.Sc. in Veterinary, Full Professor, Academician

Volodymyr Ya. Samaryk, Lviv Polytechnic National University

D.Sc. in Chemistry, Full Professor, Leading Researcher

Serhii M. Varvarenko, Lviv Polytechnic National University

D.Sc. in Chemistry, Full Professor, Leading Researcher


Schreml, S., Szeimies, R., Prantl, L., Landthaler, M., & Babilas, P. (2010). Wound healing in the 21st century. J. Am. Acad. Dermatol., 63(5), 866-881.

Powers, J. G., Morton, L. M., Phillips, T. J. (2013). Dressings for chronic wounds. Dermatol. Ther., 26(3), 197-206.

Grytsenko, O.; Pukach, P.; Suberlyak, O.; Shakhovska, N.; Karovič Jr., V. (2021). Usage of Mathematical Modeling and Optimization in Development of Hydrogel Medical Dressings Production. Electronics, 10, 620.

Abasalizadeh, F., Moghaddam, S. V., Alizadeh, E., Akbari, E., Kashani, E., Fazljou, S. M., Torbati, M., Akbarzadeh, A. (2020). Alginate-based hydrogels as drug delivery vehicles in cancer treatment and their applications in wound dressing and 3D bioprinting. J. Bio. Eng. 14, 8.

Rezvanian, M., Ahmad, N., Amin, M. C., Ng, S. (2017). Optimization, characterization, and in vitro assessment of alginate-pectin ionic cross-linked hydrogel film for wound dressing applications. Int. J. Biol. Macromol., 97, 131-140.

Nakauma, M., Funami, T., Fang, Y., Nishinari, K., Draget, K. I., Phillips, G. O. (2017). Calcium binding and calcium-induced gelation of normal low-methoxyl pectin modified by low molecular-weight polyuronate fraction. Food Hydrocolloids, 69, 318-328.

Kozak, M., Mitina, N., Zaichenko, A., Vlizlo, V. (2020). Anionic Polyelectrolyte Hydrogel as an Adjuvant for Vaccine Development. Sci. Pharm., 88(4), 56.

Suberlyak, O., Grytsenko, O., Baran, N., Yatsulchak, G., Berezhnyy, B. (2020). Formation Features of Tubular Products on the Basis of Composite Hydrogels. Chemistry & Chemical Technology, 14(3), 312-317.

Farris, S., Schaich, K. M., Liu, L., Cooke, P. H., Piergiovanni, L., Yam, K. L. (2011). Gelatin–pectin composite films from polyion-complex hydrogels. Food Hydrocoll., 25(1), 61-70.

Nagaraja, K., Rao, K. M., & Rao, K. S. (2021). Alginate-based hydrogels. Plant and Algal Hydrogels for Drug Delivery and Regenerative Medicine, 11, 357-393.

Pawar, H. V., Boateng, J. S., Ayensu, I., Tetteh, J. (2014). Multifunctional Medicated Lyophilised Wafer Dressing for Effective Chronic Wound Healing. Journal of Pharmaceutical Sciences, 103(6), 1720-1733.

Ritger, P. L., & Peppas, N. A. (1987). A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. Journal of Controlled Release, 5(1), 37-42

Sekine, Y., Moritani, Y., Ikeda-Fukazawa, T., Sasaki, Y., Akiyoshi, K. (2012). A Hybrid Hydrogel Biomaterial by Nanogel Engineering: Bottom-Up Design with Nanogel and Liposome Building Blocks to Develop a Multidrug Delivery System. Advanced Healthcare Materials, 1(6), 722-728.

Zhao, W., Jin, X., Cong, Y., Liu, Y., Fu, J. (2012). Degradable natural polymer hydrogels for articular cartilage tissue engineering. Journal of Chemical Technology and Biotechnology, 88(3), 327-339.

Naahidi, S., Jafari, M., Logan, M., Wang, Y., Yuan, Y., Bae, H., Chen, P. (2017). Biocompatibility of hydrogel-based scaffolds for tissue engineering applications. Biotechnology Advances, 35(5), 530-544.

Wang, L., Shelton, R., Cooper, P., Lawson, M., Triffitt, J., Barralet, J. (2003). Evaluation of sodium alginate for bone marrow cell tissue engineering. Biomaterials, 24(20), 3475-3481.

Mujono, A., Evelyn, J., Prasetyanto, E. (2020) IOP Conf. Ser.: Mater. Sci. Eng. 858:012033

Nagaraja, K., Rao, K. M., & Rao, K. S. (2021). Alginate-based hydrogels. Plant and Algal Hydrogels for Drug Delivery and Regenerative Medicine, 11, 357-393.

Shevchuk, O., Bukartyk, N., Chobit, M., Tokarev, V. (2021). Synthesis and characteristics of cross-linked polymer hydrogels with embedded CdS nanocrystals. J. of Polymer Research, 28(9), 331.

Bashtyk, Y., Fechan, A., Grytsenko, O., Hotra, Z., Kremer, I., Suberlyak, O., Aksimentyeva, O., Horbenko, Yu., Kotsarenko, M. (2018). Electrical elements of the optical systems based on hydrogel - electrochromic polymer composites. Molecular Crystals and Liquid Crystals, 672(1), 150-158.

Peles, Z., & Zilberman, M. (2012). Novel soy protein wound dressings with controlled antibiotic release: Mechanical and physical properties. Acta Biomaterialia, 8(1), 209-217.

Wu, Y., Yu, S., Mi, F., Wu, C., Shyu, S., Peng, C., Chao, A. (2004). Preparation and characterization on mechanical and antibacterial properties of chitsoan/cellulose blends. Carbohydr. Polym., 57(4), 435-440.

Serdiuk, V., Shevchuk, O., Bukartyk, N., Kovalenko, T., Borysiuk, A., & Tokarev, V. (2021). Synthesis and properties of magnetite nanoparticles with peroxide‐containing polymer shell and nanocomposites based on them. Journal of Applied Polymer Science, 138(36), 50928.

Ahmad, N., Amin, M. C., Mahali, S. M., Ismail, I., Chuang, V. T. (2014). Biocompatible and Mucoadhesive Bacterial Cellulose-g-Poly(acrylic acid) Hydrogels for Oral Protein Delivery. Molecular Pharmaceutics, 11(11), 4130-4142.

Ostapiv, R., Manko, V. (2015). Mitochondria Respiration And Oxidative Phosphorilation Of Rat Tissues At Taurine Per Oral Injection. Fiziolohichnyĭ Zhurnal, 61(6), 104-113.

ASTM, ASTM D 882-02: standard test method for tensile properties of thin

plastic sheeting, Am. Soc. Testing Mater. (2002).

Nosova, N., Samaryk, V., Varvarenko , S., Nadashkevych, Z., Voronov, S. (2016). Porous polyacrylamide hydrogels: preparation and properties. Voprosy Khimii I Khimicheskoi Tekhnologii, (5-6), 78–86.

Grytsenko, O., Spišák, E., Dulebová, Ľ, Moravskii, V., Suberlyak, O. (2015). Sorption Capable Film Coatings with Variable Conductivity. Materials Science Forum, 818, 97-100.

Maikovych, O., Nosova, N., Yakoviv, M., Dron, І, Stasiuk, A., Samaryk, V., Voronov, S. (2021). Composite materials based on polyacrylamide and gelatin reinforced with polypropylene microfiber. Voprosy Khimii I Khimicheskoi Tekhnologii, (1), 45-54.

Samaryk, V., Varvarenko, S., Nosova, N., Fihurka, N., Musyanovych, A., Landfester, K., Voronov, S. (2017). Optical properties of hydrogels filled with dispersed nanoparticles. Chemistry & Chemical Technology, 11(4), 449-453.

Mysak, Y., Kovalenko, T., Serdiuk, V., Kravets, T., Martynyak-Andrushko, M. (2016). Obtaining of polymethacrylate additives and studying of operational properties of an alloyed industrial oil. Eastern-European Journal of Enterprise Technologies, 3(6(81)), 9-15.

Matysik S.I., Kuzminov B.P., Ostapiv D.D. (2020). Cytotoxic action of hepatoprotector Antral on bull sperm. Gigiena i Sanitaria, 99(2), 206-209 (In Russian.)