PREPARATION AND RESEARCH OF PROPERTIES OF COMBINED ALGINATE/GELATIN HYDROGELS
DOI:
https://doi.org/10.15421/jchemtech.v30i1.242230Keywords:
hydrogel, sodium alginate, gelatin, polymerization, wound healing, calciumAbstract
The work presents the studies on the synthesis of hydrogel material based on the natural biopolymers (sodium alginate and gelatin) for medical applications. Sodium alginate and gelatin are biocompatible, non-toxic, biodegradable polymers and renewable raw materials. Combined alginate gelatin hydrogels are formed due to the formation of a hydrogel network by simultaneous cross-linking of calcium ions of sodium alginate macromolecules, gelatin, and macro-chains of rarely cross-linked polyacrylic acid. The optimal synthesis conditions (reagent concentrations, the molar ratio of calcium ions to the number of carboxyl groups Ca2+/COOH-) of the combined hydrogels with satisfactory physicochemical and mechanical properties are determined. The dependences of the mechanical properties of alginate-gelatin hydrogels on the degree of swelling indicate a wide range of their satisfactory performance characteristics. The studies on sorption and release of analgesics (lidocaine and novocaine) show long-term release of drugs and allow predicting the possibility of their prolonged delivery. In vitro cytotoxicity analysis proved the absence of toxic effect on living cells. The results suggest that the obtained combined alginate-gelatin hydrogels are a promising material for producing hydrogel dressings for wound care.
References
Schreml, S., Szeimies, R., Prantl, L., Landthaler, M., & Babilas, P. (2010). Wound healing in the 21st century. J. Am. Acad. Dermatol., 63(5), 866-881. https://doi.org/10.1016/j.jaad.2009.10.048
Powers, J. G., Morton, L. M., Phillips, T. J. (2013). Dressings for chronic wounds. Dermatol. Ther., 26(3), 197-206. https://doi.org/10.1111/dth.12055
Grytsenko, O.; Pukach, P.; Suberlyak, O.; Shakhovska, N.; Karovič Jr., V. (2021). Usage of Mathematical Modeling and Optimization in Development of Hydrogel Medical Dressings Production. Electronics, 10, 620. https://doi.org/10.3390/electronics10050620
Abasalizadeh, F., Moghaddam, S. V., Alizadeh, E., Akbari, E., Kashani, E., Fazljou, S. M., Torbati, M., Akbarzadeh, A. (2020). Alginate-based hydrogels as drug delivery vehicles in cancer treatment and their applications in wound dressing and 3D bioprinting. J. Bio. Eng. 14, 8. https://doi.org/10.1186/s13036-020-0227-7
Rezvanian, M., Ahmad, N., Amin, M. C., Ng, S. (2017). Optimization, characterization, and in vitro assessment of alginate-pectin ionic cross-linked hydrogel film for wound dressing applications. Int. J. Biol. Macromol., 97, 131-140. https://doi.org/10.1016/j.ijbiomac.2016.12.079
Nakauma, M., Funami, T., Fang, Y., Nishinari, K., Draget, K. I., Phillips, G. O. (2017). Calcium binding and calcium-induced gelation of normal low-methoxyl pectin modified by low molecular-weight polyuronate fraction. Food Hydrocolloids, 69, 318-328. https://doi.org/10.1016/j.foodhyd.2016.12.035
Kozak, M., Mitina, N., Zaichenko, A., Vlizlo, V. (2020). Anionic Polyelectrolyte Hydrogel as an Adjuvant for Vaccine Development. Sci. Pharm., 88(4), 56. https://doi.org/10.3390/scipharm88040056
Suberlyak, O., Grytsenko, O., Baran, N., Yatsulchak, G., Berezhnyy, B. (2020). Formation Features of Tubular Products on the Basis of Composite Hydrogels. Chemistry & Chemical Technology, 14(3), 312-317. https://doi.org/10.23939/chcht14.03.312
Farris, S., Schaich, K. M., Liu, L., Cooke, P. H., Piergiovanni, L., Yam, K. L. (2011). Gelatin–pectin composite films from polyion-complex hydrogels. Food Hydrocoll., 25(1), 61-70. https://doi.org/10.1016/j.foodhyd.2010.05.006
Nagaraja, K., Rao, K. M., & Rao, K. S. (2021). Alginate-based hydrogels. Plant and Algal Hydrogels for Drug Delivery and Regenerative Medicine, 11, 357-393. https://doi.org/10.1016/b978-0-12-821649-1.00010-6
Pawar, H. V., Boateng, J. S., Ayensu, I., Tetteh, J. (2014). Multifunctional Medicated Lyophilised Wafer Dressing for Effective Chronic Wound Healing. Journal of Pharmaceutical Sciences, 103(6), 1720-1733. https://doi.org/10.1002/jps.23968
Ritger, P. L., & Peppas, N. A. (1987). A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. Journal of Controlled Release, 5(1), 37-42 https://doi.org/10.1016/0168-3659(87)90035-6
Sekine, Y., Moritani, Y., Ikeda-Fukazawa, T., Sasaki, Y., Akiyoshi, K. (2012). A Hybrid Hydrogel Biomaterial by Nanogel Engineering: Bottom-Up Design with Nanogel and Liposome Building Blocks to Develop a Multidrug Delivery System. Advanced Healthcare Materials, 1(6), 722-728. https://doi.org/10.1002/adhm.201200175
Zhao, W., Jin, X., Cong, Y., Liu, Y., Fu, J. (2012). Degradable natural polymer hydrogels for articular cartilage tissue engineering. Journal of Chemical Technology and Biotechnology, 88(3), 327-339. https://doi.org/10.1002/jctb.3970
Naahidi, S., Jafari, M., Logan, M., Wang, Y., Yuan, Y., Bae, H., Chen, P. (2017). Biocompatibility of hydrogel-based scaffolds for tissue engineering applications. Biotechnology Advances, 35(5), 530-544. https://doi.org/10.1016/j.biotechadv.2017.05.006
Wang, L., Shelton, R., Cooper, P., Lawson, M., Triffitt, J., Barralet, J. (2003). Evaluation of sodium alginate for bone marrow cell tissue engineering. Biomaterials, 24(20), 3475-3481. https://doi.org/10.1016/s0142-9612(03)00167-4
Mujono, A., Evelyn, J., Prasetyanto, E. (2020) IOP Conf. Ser.: Mater. Sci. Eng. 858:012033 https://doi.org/10.1088/1757-899x/858/1/012033
Nagaraja, K., Rao, K. M., & Rao, K. S. (2021). Alginate-based hydrogels. Plant and Algal Hydrogels for Drug Delivery and Regenerative Medicine, 11, 357-393. https://doi.org/10.1016/b978-0-12-821649-1.00010-6
Shevchuk, O., Bukartyk, N., Chobit, M., Tokarev, V. (2021). Synthesis and characteristics of cross-linked polymer hydrogels with embedded CdS nanocrystals. J. of Polymer Research, 28(9), 331. https://doi.org/10.1007/s10965-021-02662-3
Bashtyk, Y., Fechan, A., Grytsenko, O., Hotra, Z., Kremer, I., Suberlyak, O., Aksimentyeva, O., Horbenko, Yu., Kotsarenko, M. (2018). Electrical elements of the optical systems based on hydrogel - electrochromic polymer composites. Molecular Crystals and Liquid Crystals, 672(1), 150-158. https://doi.org/10.1080/15421406.2018.1550546
Peles, Z., & Zilberman, M. (2012). Novel soy protein wound dressings with controlled antibiotic release: Mechanical and physical properties. Acta Biomaterialia, 8(1), 209-217. https://doi.org/10.1016/j.actbio.2011.08.022
Wu, Y., Yu, S., Mi, F., Wu, C., Shyu, S., Peng, C., Chao, A. (2004). Preparation and characterization on mechanical and antibacterial properties of chitsoan/cellulose blends. Carbohydr. Polym., 57(4), 435-440. https://doi.org/10.1016/j.carbpol.2004.05.013
Serdiuk, V., Shevchuk, O., Bukartyk, N., Kovalenko, T., Borysiuk, A., & Tokarev, V. (2021). Synthesis and properties of magnetite nanoparticles with peroxide‐containing polymer shell and nanocomposites based on them. Journal of Applied Polymer Science, 138(36), 50928. https://doi.org/10.1002/app.50928
Ahmad, N., Amin, M. C., Mahali, S. M., Ismail, I., Chuang, V. T. (2014). Biocompatible and Mucoadhesive Bacterial Cellulose-g-Poly(acrylic acid) Hydrogels for Oral Protein Delivery. Molecular Pharmaceutics, 11(11), 4130-4142. https://doi.org/10.1021/mp5003015
Ostapiv, R., Manko, V. (2015). Mitochondria Respiration And Oxidative Phosphorilation Of Rat Tissues At Taurine Per Oral Injection. Fiziolohichnyĭ Zhurnal, 61(6), 104-113. https://doi.org/10.15407/fz61.06.104
ASTM, ASTM D 882-02: standard test method for tensile properties of thin
plastic sheeting, Am. Soc. Testing Mater. (2002).
Nosova, N., Samaryk, V., Varvarenko , S., Nadashkevych, Z., Voronov, S. (2016). Porous polyacrylamide hydrogels: preparation and properties. Voprosy Khimii I Khimicheskoi Tekhnologii, (5-6), 78–86.
Grytsenko, O., Spišák, E., Dulebová, Ľ, Moravskii, V., Suberlyak, O. (2015). Sorption Capable Film Coatings with Variable Conductivity. Materials Science Forum, 818, 97-100. https://doi.org/10.4028/www.scientific.net/msf.818.97
Maikovych, O., Nosova, N., Yakoviv, M., Dron, І, Stasiuk, A., Samaryk, V., Voronov, S. (2021). Composite materials based on polyacrylamide and gelatin reinforced with polypropylene microfiber. Voprosy Khimii I Khimicheskoi Tekhnologii, (1), 45-54. http://dx.doi.org/10.32434/0321-4095-2021-134-1-45-54
Samaryk, V., Varvarenko, S., Nosova, N., Fihurka, N., Musyanovych, A., Landfester, K., Voronov, S. (2017). Optical properties of hydrogels filled with dispersed nanoparticles. Chemistry & Chemical Technology, 11(4), 449-453. https://doi.org/10.23939/chcht11.04.449
Mysak, Y., Kovalenko, T., Serdiuk, V., Kravets, T., Martynyak-Andrushko, M. (2016). Obtaining of polymethacrylate additives and studying of operational properties of an alloyed industrial oil. Eastern-European Journal of Enterprise Technologies, 3(6(81)), 9-15. https://doi.org/10.15587/1729-4061.2016.71235
Matysik S.I., Kuzminov B.P., Ostapiv D.D. (2020). Cytotoxic action of hepatoprotector Antral on bull sperm. Gigiena i Sanitaria, 99(2), 206-209 (In Russian.) https://doi.org/10.33029/0016-9900-2020-99-2-206-209
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Днипровский национальный университет имени Олеся Гончара
This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors reserve the right of attribution for the submitted manuscript, while transferring to the Journal the right to publish the article under the Creative Commons Attribution License. This license allows free distribution of the published work under the condition of proper attribution of the original authors and the initial publication source (i.e. the Journal)
- Authors have the right to enter into separate agreements for additional non-exclusive distribution of the work in the form it was published in the Journal (such as publishing the article on the institutional website or as a part of a monograph), provided the original publication in this Journal is properly referenced
- The Journal allows and encourages online publication of the manuscripts (such as on personal web pages), even when such a manuscript is still under editorial consideration, since it allows for a productive scientific discussion and better citation dynamics (see The Effect of Open Access).