• Vasyl I. Shupeniuk Vasyl Stefanyk Precarpathian National University, Ukraine
  • Amaladoss Nepolraj Annai College of Arts and Science, India
  • Tatiana N. Taras Vasyl Stefanyk Precarpathian National University, Ukraine
  • Oksana P. Sabadakh Vasyl Stefanyk Precarpathian National University, Ukraine
  • Mykola Р. Matkivskyi Vasyl Stefanyk Precarpathian National University, Ukraine
  • Yevhen R. Luchkevych Vasyl Stefanyk Precarpathian National University, Ukraine




Аnthraquinones, triazene, molecular docking, RNA polymerase, protease Covid-19.


Five previously known anthraquinones with amino derivatives and synthesized new triazene (1-[(1E)-3,3-bis(2-hydroxyethyl)triaz-1-en-1-ol]-4-[(2-hydroxyethyl)amino]anthracene-9,10-dione) were evaluated in-silico as inhibitors of COVID-19 main protease. Preliminary screening has shown that the presence of a sulfo group in the second position of the anthraquinone ring reduces activity, probably due to the inability of the molecule to cross the hydrophilic-lipophilic barrier. Therefore, the desulfation reaction of 4-substituted anthraquinone was carried out and triazene was synthesized on its basis, which due to the presence of a triazene bridge showed good activity. The structures of the synthesized compound were confirmed by IR, 1H, 13C NMR, and LC-MS spectral studies. Chemo-informatics study showed that the compound obeyed the Lipinski's rule. Computational docking analysis was performed using PyRx, AutoDock Vina option based on scoring functions. In-silico molecular docking study results demonstrated Greater binding energy and affinity to the active pocket the N3 binding site of the Coronavirus primary protease.

Author Biography

Vasyl I. Shupeniuk, Vasyl Stefanyk Precarpathian National University

інженер кафедри хімії середовища та хімічної освіти


Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., Lu, R., Niu, P., Zhan, F., Ma, X., Wang, D., Xu, W., Wu, G., Gao, G. F., Tan W. A. (2019). Novel coronavirus from patients with pneumonia in China, N. Engl. J. Med., 382(8), 727–733. doi: 10.1056/NEJMoa2001017

Wu, A., Peng, Y., Huang, B., Ding, X., Wang, X., Niu, P., Meng, J., Zhu, Z., Zhang, Wang, Z., Sheng, J., Quan, J. L., Xia, Z., Tan, W., Cheng, G., Jiang T. (2020). Genome Composition and Divergence of the novel coronavirus (2019-nCoV) originating in China, Cell Host. Microbe., 27(3), 325–328.


Fehr, A. R., Perlman, S. (2015). Coronaviruses: An overview of their replication and pathogenesis, Methods. Mol. Biol., 1282, 1–23. https://doi.org/10.1007/978-1-4939-2438-7_1

Jamkhande, P. G., Pathan, S. K., Wadher, S. J. (2016). In silico PASS analysis and determination of antimycobacterial, antifungal, and antioxidant efficacies of maslinic acid in an extract rich in pentacyclic triterpenoids, Int. J. Mycobacteriol., 5, 417–25. https://doi.org/10.1016/j.ijmyco.2016.06.020

Malik, E., Muller, C. (2016). Anthraquinones as pharmacological tools and drugs., Med. Res. Rev., 36, 705. https://doi.org/10.1002/med.21391

Hussain, H., Al-Harrasi, A., Al-Rawahi, A., Green, I., Csuk, R., Ahmed, I., Shan, A., Abbas, G., Rehman, N., Ullah, R. (2015). A fruitful decade from 2005 to 2014 for anthraquinone patents. Expert Opin. Ther. Pat., 25, 1053.https://doi.org/10.1517/13543776.2015.1050793

Khanal, P., Patil, B.M., Chand, J., Naaz, Y. (2020). Anthraquinone Derivatives as an Immune Booster and their Therapeutic Option Against COVID-19. Nat. Prod. Bioprospect., 10(5), 325–335. https://doi.org/10.1007/s13659-020-00260-2

Enmozhi, S. K., Raja, K., Sebastine, I., Joseph, J. (2020). Andrographolide as a potential inhibitor of SARS- CoV-2 main protease: An in-silico approach, J. Biomol. Struct. Dyn., 39(9), 3092-3098 doi: 10.1080/07391102.2020.1760136

Daina, A., Michielin, O., Zoete, V. (2017). Swiss ADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules, Sci. Rep., 7, 42717. https://doi.org/10.1038/srep42717

Meng, X. Y., Zhang, H. X., Mezei, M., Cui, M. (2011). Molecular docking: a powerful approach for structure- based drug discovery, Curr. Comput Aid. Drug., 7, 146–157. https://doi.org/10.2174/157340911795677602

Forli, S., Huey, R., Pique, M. E., Sanner, M. F., Goodsell, D. S. Olson, A. J. (2016). Computational protein-ligand docking and virtual drug screening with the AutoDock suite, Nature protocols, 11, 905–919. https://doi.org/10.1038/nprot.2016.051

Hassan, N. M., Alhossary, A. A., Mu, Y. (2017). Protein-ligand blind docking using Quick Vina-w with Inter-Process spatio-temporal Integration, Sci. Rep., 7, 15451. https://doi.org/10.1038/s41598-017-15571-7

Saeed, A., Ur-Rehman, S., Channar P. A. (2017). Jack bean urease inhibitors, and antioxidant activity based on palmitic acid derived 1-acyl-3-arylthioureas: Synthesis, kinetic mechanism and molecular docking studies, Drug. Res., 67, 596–605. doi: 10.1055/s-0043-113832

Shupeniuk, V., Amaladoss, N., Sabadakh, O., Taras, T., Matkivsky M. (2021). Synthesis of 4-substituted primary aliphatic aminoanthraquinones and in silico studies. Russ. J. Org. Chem., 57(4), 582–588. https://doi.org/10.1134/S1070428021040126

Shupenіuk, V., Taras, T., Sabadakh, O., Luchkevich, E., Kornii Y. (2020). Synthesis some 4-substituted 9,10-anthraquinones. French-Ukrainian Journal of Chemistry. 8(1), 58–65.


Li, H.; Li, N.J.; Gu, H.W. (2010). Two different memory characteristics controlled by the film thickness of polymethacrylate containing pendant azobenzothiazole. J. Phys. Chem. C, 114, 6117. doi.org/10.1021/jp910772m

Baqi, Y., Muller, C.E. (2012). Efficient and mild deamination procedure for 1-aminoanthraquinones yielding a diverse library of novel derivatives with potential biological activity. Tetrahedron Lett., 53, 6739. https://doi.org/10.1016/j.tetlet.2012.09.011

Shupeniuk, V., Taras, T., Sabadakh, O., Luchkevich, E., Matkivsky, M. (2021). Methods of synthesis of hydroxyanthraquinone derivatives and their biological activity. Journal of Chemistry and Technologies, 29(2). 219–231. doi: 10.15421/jchemtech.v29i2.225941