ISOTHERMAL SECTION AT 1600 °C FOR THE ZrO2–HfO2–Sm2O3 SYSTEM

Authors

  • Yuriy V. Yurchenko Frantsevich Institute for Problems in Materials Science NAS of Ukraine, Ukraine
  • Oksana A. Kornienko Frantsevich Institute for Problems of Materials Science, NAS of Ukraine, Ukraine
  • Oleksandr I. Bykov Frantsevich Institute for Problems in Materials Science NAS of Ukraine, Ukraine
  • Anatoliy V. Sameliuk Frantsevich Institute for Problems in Materials Science NAS of Ukraine, Ukraine

DOI:

https://doi.org/10.15421/jchemtech.v30i1.245246

Keywords:

phase equilibria, phase diagram, solid solution, lattice parameters, functional ceramics

Abstract

According to the results of the samples studied by the method of X-ray phase and microstructural analyses, the phase equilibria in the ternary system ZrO2–HfO2–Sm2O3were investigated. The formation of new phases in the ZrО2–HfO2–Sm2O3 system at 1600 °С was not observed. It is established that in the studied system at 1600 °С fields of solid solutions on the basis of tetragonal (T) modification of ZrО2, monoclinic (M) modifications of HfO2 and monoclinic (В) modifications of Sm2O3, and also the ordered phase with structure of the pyrochlore-type (Py) Ln2Zr2O7 (Ln2Hf2O7). The boundaries of the phase fields and the parameters of the unit cells of the formed phases are determined. The studied isothermal cross section of the ZrО2–HfO2–Sm2O3 system is characterized by the formation of continuous rows of cubic solid solutions based on a phase with a structure of the pyrochlore-type Sm2Zr2O7 (Sm2Hf2O7) and a structure of the fluorite type F-ZrO2 (HfO2). It is established that two regions of homogeneity of cubic solid solutions (F) are formed in the investigated system. The existence of these regions of homogeneity is due to the rupture of the solubility of the F-ZrO2 (HfO2) phase in the region of the existence of an ordered phase with a structure of the pyrochlore-type Sm2Zr2O7 (Sm2Hf2O7). It is established that a solid solution based on a cubic modification with a fluorite-type structure exists in equilibrium with all phases observed in the system. Isothermal cross-section of the state diagram of the system ZrO2–HfO2–Sm2O3 at 1600 °C is characterized by the presence of one three-phase (F + T + M), as well as five two-phase (B + F, two - F + Py, M + F, T + F ) areas

Author Biography

Oksana A. Kornienko, Frantsevich Institute for Problems of Materials Science, NAS of Ukraine

старший науковий співробітник

References

Mikuśkiewicz, M., Migas, D., Moskal. G. (2018). Synthesis and thermal properties of zirconate, hafnate and cerate of samarium. Surf & Coat Technol. 354, 66–75. https://doi.org/10.1016/j.surfcoat.2018.08.096.

Gupta, S.K., Zuniga, J. P., Abdou, M., Thomas, M.P., Guiton, B. S., Mao, Y. (2018). Lanthanide-doped lanthanum hafnate nanoparticles as multicolor phosphors for warm white lighting and scintillators. Surf & Coat Technol. 25, 66–75. https://doi.org/10.1016/j.cej.2019.122314.

Shlyakhtina, A. V., Lyskov, N. V., Shchegolikhin, A. N., Kolbanev, I.V., Chernyak, S. A., Konysheva, E. Yu. (2021). Valence state of europium and samarium in Ln2Hf2O7 (Ln = Eu, Sm) based oxygen ion conductors. Ceram. Internat. 47, 26898–26906.

https://doi.org/10.1016/j.ceramint.2021.06.099.

Sun, M., Sui, Y., Gao, K., Tan, C., Dai, L., Zhou, G., Zhang, Y. (2019). Theoretical investigation of mechanical and thermal properties of RE2Hf2O7 (RE = La, Ce, Pr, Nd, Pm and Sm ) pyrochlore oxides. Ceram. Internat. 45, 12101–12105. https://doi.org/10.1016/j.ceramint.2019.03.108.

Sevastyanov, V. G., Simonenko, E. P., Simonenko, N. P., Stolyarova, V. L., Lopatin, S. I., Kuznetsov, N. T. (2015). Synthesis, vaporization and thermodynamics of ceramic powders based on the Y2O3–ZrO2–HfO2 system. Mater. Chem. and Phys. 153, 78–87. https://doi.org/10.1016/j.matchemphys.2014.12.037

Bakradze, M. M., Doronin, O. N., Artemenko, N. I., Stekhov, P. A., Marakhovskii, P. S., Stolyarova, V. L. (2021). Physicochemical Properties of Sm2O3–ZrO2–HfO2 Ceramics for the Development of Promising Thermal Barrier Coatings. Russ. J. of Inorg. Chem. 66, 789–797. https://doi.org/10.1134/S003602362105003X

Stolyarova, V. L., Vorozhtcov, V. A., Lopatin, S. I., Shugurov, S. M., Shilov, A. L., Karachevtsev, F. N. (2021). Mass spectrometric study of ceramics in the Sm2O3‐ZrO2‐HfO2 system at high temperatures. Rap Commun in Mass Spectr . 35(9), 1–13.

https://doi.org 10.1002/rcm.9066

Kablov, E. N., Stolyarova, V. L., Vorozhtcov, V. A., Lopatin, S. I., Karachevtsev, F. N. (2019) Vaporization and thermodynamics of ceramics in the Y2O3-ZrO2-HfO2 system. Rap Commun in Mass Spectrom. 33 (19), 1537–1546. https://doi.org/10.1002/rcm.8501

Kablov, E. N., Stolyarova, V. L., Vorozhtcov, V. A., Lopatin, S. I., Fabrichnaya, O. В., Ilatovskaya, M. O., Karachevtsev, F. N. (2018). Vaporization and thermodynamics of ceramics based on the La2O3-Y2O3-HfO2 system studied by the high-temperature mass spectrometric method. Rap Commun in Mass Spectrom. 32 (9), 686–694. https://doi.org/10.1002/rcm.8081

Kablov, E. N., Stolyarova, V. L., Lopatin, S. I., Karachevtsev, F. N., Folomeikin, Y. I. (2017). High-temperature mass spectrometric study of the vaporization processes and thermodynamic properties in the Gd2O3-Y2O3-HfO2 system. Rap Commun in Mass Spectrom. 31 (9), 1137–11464.

https://doi.org/10.1002/rcm.7892

Kashin, D. S., Stekhov, P. A. (2018). Modern thermal barrier coatings obtained byelectron-beam physical vapor deposition (a review). Proc VIAM. 62 (2), 84–90. https://doi.org/10.18577/2307-6046-2018-0-2-10-10

Kol, S., Oral, A. Y. (2019). Hf-Based High-k Dielectrics: A Review. Acta Phys Polonic A. 138, P. 873–881. https://doi.org/10.12693/APhysPolA.136.873

Stolyarova, V. L., Vorozhtcov, V. A., Shilov, A. L., Lopatin, S. I., Shugurov SM (2020) Ceramics based on the Sm2O3–Y2O3 and Sm2O3-HfO2 systems at high temperatures: Thermodynamics and modeling. Mater Chem and Phys. 252, 123240. DOI:10.1016/j.matchemphys.2020.123240

Mikuśkiewicz, M., Migas, D., Moskal, G. (2018). Synthesis and thermal properties of zirconate, hafnate and cerate of samarium. Surf Coatings Technol. 354, 66–75. https://doi.org/10.1016/j.surfcoat.2018.08.096

Zinatloo-Ajabshir, S., Ghasemian, N., Salavati-Niasari, M. (2020). Green synthesis of Ln2Zr2O7 (Ln = Nd, Pr) ceramic nanostructures using extract of green tea via a facile route and their efficient application on propane-selective catalytic reduction of NOx process. Ceram Int. 46, 66–73.

https://doi.org/10.1016/j.ceramint.2019.08.231.

Kornienko, O. A., Bykov, O. I., Sameljuk, A. V., Bataiev, Yu. M. (2021) Structure of isothermal sections of the state of the system ZrO2 – La2O3 – Eu2O3 at temperatures 1500 and 1250 ºС. J of the Europ Ceram Soc. 41 (3), 2145–2156/

https://doi.org/10.1016/j.jeurceramsoc.2020.10.033

Andrievskaya, E., Kornienko, O., Bykov, A., Sameljuk, A. (2020). Phase Equilibria in the ZrO2–La2O3–Gd2O3 System at 1600°C. Powder Metall Met Ceram. 58 (11–12), 714–724. https://doi.org/10.1007/s11106-020-00128-7

Li, Y., Meng, X., Chen, Q., Zhu, J., Xu, J., Michael, J. (2021). Reece, Electronic structure and thermal properties of Sm3+-doped La2Zr2O7: First-principles calculations and experimental study. J of the Amer Ceram Soc. 104, 1475-1488. https://doi.org/10.1111/jace.17561

Yang, L., Zhu, C., Sheng, Y., Nian, H., Li, Q., Song, P., Lu, W., Yang, J., Liu. B. (2018). Investigation of mechanical and thermal properties of rare earth pyrochlore oxides by first-principles calculations. J of the Amer Ceram Soc. 102, 2830–2840.

https://doi.org/10.1111/jace.16073

Roncallo, G., Cacciamani, G., Vacchieri, E., Ilatovskaia, M., Saenko, I., Fabrichnaya, O. (2020). Thermodynamic modeling and experimental investigation of the MgO-Y2O3-ZrO2 system. J of the Amer Ceram Soc. 103, 5337–5353. https://doi.org/10.1111/jace.17224

Shevchenko, A. V, Lopato, L. M., Tkachenko, V. D., Ruban A. K. (1987). Interaction of hafnium and zirconium dioxides. Izv. USSR Acad. of Scien. Inorg. Mater. 23, 259–63.

Wang, C., Zinkevich, M., Aldinger, F. (2006). The Zirconia-Hafnia System: DTA Measurements and Thermodynamic Calculations. J. Amer. Ceram. Soc. 89, 3751–3758. https://doi.org/10.1111/j.1551-2916.2006.01286.x.

Gluskova, V. B., Kravchinskaya, M. V. (1985). HfO2-based refractory compounds and solid solutions: I. Phase diagrams of the HfO2–M2O3 and HfO2–MO systems. Ceram. Internat. 11, 56–64. https://doi.org/10.1016/0272-8842(85)90010-0.

Andrievskaya, E. R., Gerasimyuk, G. I., Kornienko, O. A., Samelyuk, A. V., Lopato, L. M., Red’ko, V. P. (2006). Phase equilibria in the HfO2–ZrO2–CeO2 system at 1500 °C. Powd. Metall. and Met. Ceram. 45, 448–456. https://doi.org/10.1007/s11106-006-0105-y.

Rouanet, A. (1971). Contribution to the study of zirconia systems - oxides of lanthanides in the voyage of fusion: Memoire of these. Rev Intern. Hautes. Temper. and Refract. 8, 161–180.

Wang, C., Zinkevich, M., Aldinger, F. (2007). Experimental Investigation and Thermodynamic Modeling of the ZrO2-SmO1.5 System. J. Am. Ceram. Soc. 90, 2210–2219. https://doi.org/10.1111/j.1551-2916.2007.01692.x

Kornienko, O. A., Andrievskaya, O. R., Bykov, O. I., Sameljuk, A. V., Bataiev, Yu. M. (2021). Phase equilibrium in systems based on oxides of zirconium, lanthanum and samarium. J. of the Europ. Ceram. Soc. 41, 3603–3613. https://doi.org/10.1016/j.jeurceramsoc.2021.01.004,

Glushkova, V. B., Sazonova, L. V. (1967). Influence of rare earth oxide additives on zirconium dioxide polymorphism. Chem of high-temper Mat. P. 83–90.

Perez, M., Jorba, Y. (1962). Contribution a Letude Des Systems Zircone-Oxides De Terres Rares. Annual Chim. 7, 479–511.

Korniienko, O. A., Bykov, A. I., Andrievskaya, E. R. (2020). Phase Equilibria in the ZrO2–La2O3–Sm2O3 System at 1100 °C. Powd. Metall. Met. Ceram. 59, 224–231. https://doi.org/10.1007/s11106-020-00154-5.

Zoz, E. I., Fomichev, E. N., Kalashnik, A. A., Eliseeva, G. G. (1982). On the structure and properties of zirconates and hafnates of REE. J. Nonorgan. Chem. 27, 95–99.

Andrievskaya, E. R., Lopato, L. M. (1995). Influence of composition on the TM transformation in the systems ZrO2–Ln2O3 (Ln = La, Nd, Sm, Eu). J. Mater. Sci. 36, 2591–2596.

Andrievskaya, E. R., Kornienko, O. A., Samelyuk, A. V., Gorodov, V. S., Cherkasova, K. A., Zgurovets, V. O. (2008). Interaction of samarium oxide with zirconium oxide at a temperature of 1500 °C. Moder. Probl. of Phys. Mater. Sci. 17, 16–24.

Wang, C., Zinkevich, M., Aldinger, F. (2007). Phase diagrams and thermodynamics of rera-earth-doped zirconia ceramics. Pur. Appl. Chem. 79, 1731–1753. https://doi.org/10.1351/pac200779101731.

Wang, C., Zinkevich, M., Aldinger, F. (2006). The Zirconia-Hafnia System: DTA Measurements and Thermodynamic Calculations. J. Amer. Ceram. Soc. 89:3751-3758. https://doi.org/10.1111/j.1551-2916.2006.01286.x

Gluskova, V. B., Kravchinskaya, M. V. (1985). HfO2-based refractory compounds and solid solutions: I. Phase diagrams of the HfO2–M2O3 and HfO2–MO systems. Ceram. Internat 11, 56–64.

https://doi.org/10.1016/0272-8842(85)90010-0

Duran, P. (2006). The system Hafnia-Samaria. J of the Amer Ceram Soc 62:9–12. https://doi.org/10.1111 / j.1151-2916.1979.tb18794.x

Andrievskaya, E. R., Smirnov, V., Lopato, L. M. (2004). Phase Equilibria in the System Hafnia-Yttria-Samaria at 1600 °C. High Temper. Mater. and Proc. 23,147–162. https://doi.org/10.1515 / HTMP.2004.23.3.147.

Shevchenko, A. V., Lopato, L. M., Nazarenko, L. V. (1984). The systems of HfO2 with oxides of samarium, gadolinium, terbium and dysprosium at high temperatures. Izv. Acad. Nauk. SSSR Neorg. Mater. 20, 1862–1866.

Pyatenko, Yu. A. (1959) On crystal chemistry and some features of pyrochlore group minerals. Crystallography. 4, 204–208.

Published

2022-04-27

Issue

Section

Physical and inorganic chemistry