oxygen evolution reaction, kinetics, mechanism, electrocatalysis, nickel, electrodeposition, deep eutectic solvent


This work reports the kinetics and mechanism of the anodic oxygen evolution reaction occurring in an aqueous alkaline solution on two types of nickel electrodes obtained by electrodeposition technique. The first type of nickel coating was deposited from «ordinary» aqueous chloride nickel plating bath. The second type of nickel coating was deposited from an electrolyte based on ethaline (a eutectic mixture of choline chloride and ethylene glycol), which is a typical representative of the so-called deep eutectic solvents (a new generation of room-temperature ionic liquids). The electrocatalytic activity of Ni coatings towards the oxygen evolution reaction was evaluated by linear voltammetry and electrochemical impedance spectroscopy. Under conditions of moderate polarization, the rate-determining step at both types of electrodes is the transfer of the second electron. As the polarization increases, the transfer of the first electron becomes the rate-controlling step. Ni coating electrodeposited from an ethaline-based electrolyte shows a higher electrocatalytic activity than the coating obtained from an aqueous electrolyte, which is confirmed by higher exchange current densities and lower polarization resistances. The observed effects are due to the manifestation of "true" electrocatalytic activity, rather than a consequence of an increase in the surface area available to the electrochemical process.

Author Biography

Vyacheslav S. Protsenko, Ukrainian State University of Chemical Technology

Кафедра фізичної хімії, професор, д.х.н.


Grigoriev, S. A., Fateev, V. N., Bessarabov, D. G., Millet, P. (2020). Current status, research trends, and challenges in water electrolysis science and technology. Int. J. Hydrogen Energy, 45, 26036–26058.

Kovac, A., Paranos, M., Marcius, D. (2021). Hydrogen in energy transition: a review. Int. J. Hydrogen Energy, 46, 10016–10035.

Lin, R. H., Zhao, Y. Y., Wu, B. D. (2020). Toward a hydrogen society: hydrogen and smart grid integration. Int. J. Hydrogen Energy, 45, 20164–20175.

Suen, N. T., Hung, S. F., Quan, Q., Zhang, N., Xu, Y. J., Chen, H. M. (2017). Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem. Soc. Rev., 46, 337–365.

Qu, H. Y., He, X., Wang, Y., Hou, S. (2021). Electrocatalysis for the oxygen evolution reaction in acidic media: progress and challenges. Appl. Sci., 11, 4320.

Ishaque, M., Shah, A., Iftikhar, F. J., Akbar, M. (2020). Development of transition metal based electrolyzer for efficient oxygen evolution reaction. J. Renewable Sustainable Energy, 12, 024102.

Yuan, N., Jiang, Q., Li, J., Tang, J. (2020). A review on non-noble metal based electrocatalysis for the oxygen evolution reaction. Arab. J. Chem., 13, 4294–4309.

Plevova, M., Hnat, J., Bouzek, K. (2021). Electrocatalysts for the oxygen evolution reaction in alkaline and neutral media. A comparative review. J. Power Sources, 507, 230072.

Vij, V., Sultan, S., Harzandi, A. M., Meena, A., Tiwari, J. N., Lee, W. G., Yoon, T., Kim, K. S. (2017). Nickel-based electrocatalysts for energy related applications: oxygen reduction, oxygen evolution, and hydrogen evolution reactions. ACS Catal., 7, 7196–7225.

Juodkazis, K., Juodkazyte, J., Vilkauskaite, R., Jasulaitiene, V. (2008). Nickel surface anodic oxidation and electrocatalysis of oxygen evolution. J. Solid State Electrochem., 12, 1469–1479.

Protsenko, V. S., Bogdanov, D. A., Korniy, S. A., Kityk, A. A., Baskevich, A. S., Danilov, F. I. (2019). Application of a deep eutectic solvent to prepare nanocrystalline Ni and Ni/TiO2 coatings as electrocatalysts for the hydrogen evolution reaction. Int. J. Hydrogen Energy, 44, 24604–24616.

Danilov, F. I., Protsenko, V. S., Kityk, A. A., Shaiderov, D. A., Vasil'eva, E. A., Pramod Kumar, U., Joseph Kennady, C. (2017). Electrodeposition of nanocrystalline nickel coatings from a deep eutectic solvent with water addition. Prot. Met. Phys. Chem. Surf., 53, 1131–1138.

Lukaczynska, M., Cherigui, E. A. M., Ceglia, A., Van Den Bergh, K., De Strycker, J., Terryn, H., Ustarroz, J. (2019). Influence of water content and applied potential on the electrodeposition of Ni coatings from deep eutectic solvents. Electrochim. Acta, 319, 690–704.

Smith, E. L., Abbott, A. P., Ryder, K. S. (2014). Deep eutectic solvents (DESs) and their applications. Chem. Rev., 114, 11060–11082.

Tome, L. I. N., Baiao, V., da Silva, W., Brett, C. M. A. (2018). Deep eutectic solvents for the production and application of new materials. Appl. Mater. Today, 10, 30–50.

Hansen, B. B., Spittle, S., Chen, B., Poe, D., Zhang, Y., Klein, J. M., Horton, A., Adhikari, L., Zelovich, T., Doherty, B. W., Gurkan, B., Maginn, E. J., Ragauskas, A., Dadmun, M., Zawodzinski, T. A., Baker, G. A., Tuckerman, M. E., Savinell, R. F., Sangoro, J. R. (2021). Deep eutectic solvents: a review of fundamentals and applications. Chem. Rev., 121, 1232–1285.

Abbott, A. P., Ryder, K. S., Konig, U. (2008). Electrofinishing of metals using eutectic based ionic liquids. Trans. Inst. Met. Finish., 86, 196–204.

Wang, S., Zou, X., Lu, Y., Rao, S., Xie, X., Pang, Z., Lu, X., Xu, Q., Zhou, Z. (2018). Electrodeposition of nano-nickel in deep eutectic solvents for hydrogen evolution reaction in alkaline solution. Int. J. Hydrogen Energy, 43, 15673–15686.

Protsenko, V. S., Bogdanov, D. A., Kityk, A. A., Korniy, S. A., Danilov, F. I. (2020). Ni–TiO2 functional composite coatings deposited from an electrolyte based on a choline-containing ionic liquid. Russ. J. Appl. Chem., 93, 1525–1532.

Danilov, F. I., Kityk, A. A., Shaiderov, D. A., Bogdanov, D. A., Korniy, S. A., Protsenko, V. S. (2019). Electrodeposition of Ni–TiO2 composite coatings using electrolyte based on a deep eutectic solvent. Surf. Eng. Appl. Electrochem., 55, 138–149.

Lyons, M. E. G., Brandon, M. P. (2008). The oxygen evolution reaction on passive oxide covered transition metal electrodes in aqueous alkaline solution. Part 1 – nickel. Int. J. Electrochem. Sci., 3, 1386–1424.

Lyons, M. E. G., Brandon, M. P. (2009). The significance of electrochemical impedance spectra recorded during active oxygen evolution for oxide covered Ni, Co and Fe electrodes in alkaline solution. J. Electroanal. Chem., 631, 62–70.

Tahir, M., Pan, L., Idrees, F., Zhang, X., Wang, L., Zou, J. J., Wan, Z. L. (2017). Electrocatalytic oxygen evolution reaction for energy conversion and storage: a comprehensive review. Nano Energy, 37, 136–157.

Hausmann, J. N., Traynor, B., Myers, R. J., Driess, M., Menezes, P. W. (2021). The pH of aqueous NaOH/KOH solutions: a critical and non-trivial parameter for electrocatalysis. ACS Energy Lett., 6, 3567–3571.

Lyons, M. E. G., Brandon, M. P. (2010). A comparative study of the oxygen evolution reaction on oxidised nickel, cobalt and iron electrodes in base. J. Electroanal. Chem., 641, 119–130.

Armstrong, R. D., Henderson, M. (1972). Impedance plane display of a reaction with an adsorbed intermediate. J. Electroanal. Chem. Interf. Electrochem., 39, 81–90.

Protsenko, V. S. (2021). Electrodeposition of electrocatalytic coatings in systems based on deep eutectic solvents: a review. Voprosy Khimii i Khimicheskoi Tekhnologii, (2), 4–22.