KINETICS AND MECHANISM OF ELECTROCHEMICAL OXYGEN EVOLUTION IN AN ALKALINE SOLUTION ON NICKEL COATINGS
DOI:
https://doi.org/10.15421/jchemtech.v30i1.245490Keywords:
oxygen evolution reaction, kinetics, mechanism, electrocatalysis, nickel, electrodeposition, deep eutectic solventAbstract
This work reports the kinetics and mechanism of the anodic oxygen evolution reaction occurring in an aqueous alkaline solution on two types of nickel electrodes obtained by electrodeposition technique. The first type of nickel coating was deposited from «ordinary» aqueous chloride nickel plating bath. The second type of nickel coating was deposited from an electrolyte based on ethaline (a eutectic mixture of choline chloride and ethylene glycol), which is a typical representative of the so-called deep eutectic solvents (a new generation of room-temperature ionic liquids). The electrocatalytic activity of Ni coatings towards the oxygen evolution reaction was evaluated by linear voltammetry and electrochemical impedance spectroscopy. Under conditions of moderate polarization, the rate-determining step at both types of electrodes is the transfer of the second electron. As the polarization increases, the transfer of the first electron becomes the rate-controlling step. Ni coating electrodeposited from an ethaline-based electrolyte shows a higher electrocatalytic activity than the coating obtained from an aqueous electrolyte, which is confirmed by higher exchange current densities and lower polarization resistances. The observed effects are due to the manifestation of "true" electrocatalytic activity, rather than a consequence of an increase in the surface area available to the electrochemical process.
References
Grigoriev, S. A., Fateev, V. N., Bessarabov, D. G., Millet, P. (2020). Current status, research trends, and challenges in water electrolysis science and technology. Int. J. Hydrogen Energy, 45, 26036–26058. https://doi.org/10.1016/j.ijhydene.2020.03.109
Kovac, A., Paranos, M., Marcius, D. (2021). Hydrogen in energy transition: a review. Int. J. Hydrogen Energy, 46, 10016–10035. https://doi.org/10.1016/j.ijhydene.2020.11.256
Lin, R. H., Zhao, Y. Y., Wu, B. D. (2020). Toward a hydrogen society: hydrogen and smart grid integration. Int. J. Hydrogen Energy, 45, 20164–20175. https://doi.org/10.1016/j.ijhydene.2020.01.047
Suen, N. T., Hung, S. F., Quan, Q., Zhang, N., Xu, Y. J., Chen, H. M. (2017). Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem. Soc. Rev., 46, 337–365. https://doi.org/10.1039/c6cs00328a
Qu, H. Y., He, X., Wang, Y., Hou, S. (2021). Electrocatalysis for the oxygen evolution reaction in acidic media: progress and challenges. Appl. Sci., 11, 4320. https://doi.org/10.3390/app11104320
Ishaque, M., Shah, A., Iftikhar, F. J., Akbar, M. (2020). Development of transition metal based electrolyzer for efficient oxygen evolution reaction. J. Renewable Sustainable Energy, 12, 024102. https://doi.org/10.1063/1.5123234
Yuan, N., Jiang, Q., Li, J., Tang, J. (2020). A review on non-noble metal based electrocatalysis for the oxygen evolution reaction. Arab. J. Chem., 13, 4294–4309. https://doi.org/10.1016/j.arabjc.2019.08.006
Plevova, M., Hnat, J., Bouzek, K. (2021). Electrocatalysts for the oxygen evolution reaction in alkaline and neutral media. A comparative review. J. Power Sources, 507, 230072. https://doi.org/10.1016/j.jpowsour.2021.230072
Vij, V., Sultan, S., Harzandi, A. M., Meena, A., Tiwari, J. N., Lee, W. G., Yoon, T., Kim, K. S. (2017). Nickel-based electrocatalysts for energy related applications: oxygen reduction, oxygen evolution, and hydrogen evolution reactions. ACS Catal., 7, 7196–7225. https://doi.org/10.1021/acscatal.7b01800
Juodkazis, K., Juodkazyte, J., Vilkauskaite, R., Jasulaitiene, V. (2008). Nickel surface anodic oxidation and electrocatalysis of oxygen evolution. J. Solid State Electrochem., 12, 1469–1479. https://doi.org/10.1007/s10008-007-0484-0
Protsenko, V. S., Bogdanov, D. A., Korniy, S. A., Kityk, A. A., Baskevich, A. S., Danilov, F. I. (2019). Application of a deep eutectic solvent to prepare nanocrystalline Ni and Ni/TiO2 coatings as electrocatalysts for the hydrogen evolution reaction. Int. J. Hydrogen Energy, 44, 24604–24616. https://doi.org/10.1016/j.ijhydene.2019.07.188
Danilov, F. I., Protsenko, V. S., Kityk, A. A., Shaiderov, D. A., Vasil'eva, E. A., Pramod Kumar, U., Joseph Kennady, C. (2017). Electrodeposition of nanocrystalline nickel coatings from a deep eutectic solvent with water addition. Prot. Met. Phys. Chem. Surf., 53, 1131–1138. https://doi.org/10.1134/S2070205118010203
Lukaczynska, M., Cherigui, E. A. M., Ceglia, A., Van Den Bergh, K., De Strycker, J., Terryn, H., Ustarroz, J. (2019). Influence of water content and applied potential on the electrodeposition of Ni coatings from deep eutectic solvents. Electrochim. Acta, 319, 690–704. https://doi.org/10.1016/j.electacta.2019.06.161
Smith, E. L., Abbott, A. P., Ryder, K. S. (2014). Deep eutectic solvents (DESs) and their applications. Chem. Rev., 114, 11060–11082. http://dx.doi.org/10.1021/cr300162p
Tome, L. I. N., Baiao, V., da Silva, W., Brett, C. M. A. (2018). Deep eutectic solvents for the production and application of new materials. Appl. Mater. Today, 10, 30–50. https://doi.org/10.1016/j.apmt.2017.11.005
Hansen, B. B., Spittle, S., Chen, B., Poe, D., Zhang, Y., Klein, J. M., Horton, A., Adhikari, L., Zelovich, T., Doherty, B. W., Gurkan, B., Maginn, E. J., Ragauskas, A., Dadmun, M., Zawodzinski, T. A., Baker, G. A., Tuckerman, M. E., Savinell, R. F., Sangoro, J. R. (2021). Deep eutectic solvents: a review of fundamentals and applications. Chem. Rev., 121, 1232–1285. https://doi.org/10.1021/acs.chemrev.0c00385
Abbott, A. P., Ryder, K. S., Konig, U. (2008). Electrofinishing of metals using eutectic based ionic liquids. Trans. Inst. Met. Finish., 86, 196–204. http://dx.doi.org/10.1179/174591908X327590
Wang, S., Zou, X., Lu, Y., Rao, S., Xie, X., Pang, Z., Lu, X., Xu, Q., Zhou, Z. (2018). Electrodeposition of nano-nickel in deep eutectic solvents for hydrogen evolution reaction in alkaline solution. Int. J. Hydrogen Energy, 43, 15673–15686. https://doi.org/10.1016/j.ijhydene.2018.06.188
Protsenko, V. S., Bogdanov, D. A., Kityk, A. A., Korniy, S. A., Danilov, F. I. (2020). Ni–TiO2 functional composite coatings deposited from an electrolyte based on a choline-containing ionic liquid. Russ. J. Appl. Chem., 93, 1525–1532. http://dx.doi.org/10.1134/S1070427220100067
Danilov, F. I., Kityk, A. A., Shaiderov, D. A., Bogdanov, D. A., Korniy, S. A., Protsenko, V. S. (2019). Electrodeposition of Ni–TiO2 composite coatings using electrolyte based on a deep eutectic solvent. Surf. Eng. Appl. Electrochem., 55, 138–149. http://dx.doi.org/10.3103/S106837551902008X
Lyons, M. E. G., Brandon, M. P. (2008). The oxygen evolution reaction on passive oxide covered transition metal electrodes in aqueous alkaline solution. Part 1 – nickel. Int. J. Electrochem. Sci., 3, 1386–1424.
Lyons, M. E. G., Brandon, M. P. (2009). The significance of electrochemical impedance spectra recorded during active oxygen evolution for oxide covered Ni, Co and Fe electrodes in alkaline solution. J. Electroanal. Chem., 631, 62–70. https://doi.org/10.1016/j.jelechem.2009.03.019
Tahir, M., Pan, L., Idrees, F., Zhang, X., Wang, L., Zou, J. J., Wan, Z. L. (2017). Electrocatalytic oxygen evolution reaction for energy conversion and storage: a comprehensive review. Nano Energy, 37, 136–157. https://doi.org/10.1016/j.nanoen.2017.05.022
Hausmann, J. N., Traynor, B., Myers, R. J., Driess, M., Menezes, P. W. (2021). The pH of aqueous NaOH/KOH solutions: a critical and non-trivial parameter for electrocatalysis. ACS Energy Lett., 6, 3567–3571. https://doi.org/10.1021/acsenergylett.1c01693
Lyons, M. E. G., Brandon, M. P. (2010). A comparative study of the oxygen evolution reaction on oxidised nickel, cobalt and iron electrodes in base. J. Electroanal. Chem., 641, 119–130. https://doi.org/10.1016/j.jelechem.2009.11.024
Armstrong, R. D., Henderson, M. (1972). Impedance plane display of a reaction with an adsorbed intermediate. J. Electroanal. Chem. Interf. Electrochem., 39, 81–90. https://doi.org/10.1016/S0022-0728(72)80477-7
Protsenko, V. S. (2021). Electrodeposition of electrocatalytic coatings in systems based on deep eutectic solvents: a review. Voprosy Khimii i Khimicheskoi Tekhnologii, (2), 4–22. http://dx.doi.org/10.32434/0321-4095-2021-135-2-4-22
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Днипровский национальный университет имени Олеся Гончара
This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors reserve the right of attribution for the submitted manuscript, while transferring to the Journal the right to publish the article under the Creative Commons Attribution License. This license allows free distribution of the published work under the condition of proper attribution of the original authors and the initial publication source (i.e. the Journal)
- Authors have the right to enter into separate agreements for additional non-exclusive distribution of the work in the form it was published in the Journal (such as publishing the article on the institutional website or as a part of a monograph), provided the original publication in this Journal is properly referenced
- The Journal allows and encourages online publication of the manuscripts (such as on personal web pages), even when such a manuscript is still under editorial consideration, since it allows for a productive scientific discussion and better citation dynamics (see The Effect of Open Access).