INFLUENCE OF SURFACTANTS ON RHEOLOGICAL PROPERTIES OF OIL-WATER-COAL EMULSIONS

Authors

  • Anatolii S. Makarov Institute of Colloid Chemistry and Water Chemistry A.V. Dumansky National Academy of Sciences of Ukraine, Ukraine https://orcid.org/0000-0002-7338-2906
  • Iryna M. Kosygina Kosygina Institute of Colloid Chemistry and Water Chemistry A.V. Dumansky National Academy of Sciences of Ukraine, Ukraine https://orcid.org/0000-0002-8277-9745
  • Alexander I. Egurnov Egurnov Limited liability company ANA-TEMS (ANA-TEMS LTD), Ukraine
  • Iryna N. Kruchko Institute of Colloid Chemistry and Water Chemistry A.V. Dumansky National Academy of Sciences of Ukraine, Ukraine

DOI:

https://doi.org/10.15421/jchemtech.v30i3.247272

Keywords:

Keywords: oil-water-coal emulsions, rheological properties, coal, motor oils, viscosity.

Abstract

The technology for obtaining highly concentrated oil-water-coal fuels used as liquid fuel in power generating plants associated with thermal engineering requirements: maximum filling of the emulsion dispersion medium with combustible components (for example, dispersed coal). In this case, the system must be stable for a long period and have a viscosity that will provide the possibility of easy transportation of fuel through pipes, storage and spraying by nozzles (with a viscosity of 1.5–2 Pa s). To study the effect of chemical reagents on the rheological properties of composite fuel, systems were obtained based on «LG» coal (Ad = 9.3 %) with a solid phase content St = 40%, used engine oil Comma Xtech 5W-30 (Cm = 49 %), water CH2O = 10 % and chemical additive 1 %. The effectiveness of reducing the viscosity of the system by a chemical additive decreases: RH-1 > DT-2 > ResinAnt 2 > DT-1 > WA-4 > ER-3 > WA-2 > WA-5 > OP-10. Additives such as ResinAnt 2, DT-2, RH-1 have the optimal ability to reduce the viscosity of the oil-watercoal fuels.

References

International Energy Outlook with projections to 2040. (2013). Washington: U.S. Energy Information Administration. https://www.eia.gov/outlooks/ieo/pdf/0484(2013).pdf

Lam, S.S., Liew, K., Cheng, C.K., Chase, H.A (2015). Catalytic microwave pyrolysis of waste engine oil using metallic pyrolysis char. Appl. Catal., B 176–177(1), 601–617.

https://doi.org/10.1016/j.apcatb.2015.04.014

Chayka, O. G. Kovalchuk, O. Z., Chayka, Y. A. (2009). Monitoring the formation of waste oils. Proceedings Scientifical Works, 221–224.

Kapustina, V., Havukainen, J., Virkki-Hatakka, T., Horttanainen M (2014.) System analysis of waste oil management in Finland. Waste Manage. Res. 32(4), 297–303.

https://doi.org/10.1177/0734242X14523663

Statistical Review of World Energy. London: BP. (2016). http://www.bp.com

Boughton, B. (2004). Environmental Assessment of Used Oil Management Methods Environ. Sci. Technol. 38(2), 353–358.

https://doi.org/10.1021/es034236p

Goncharuk, V.V., Makarov, A. S., Kosygina, I. M. Prospects for using composite liquid fuel in power engineering. (2020) The Problems of General Energy, 2(61), 38–42. doi: https://doi.org/10.15407/pge2020.02.038

Kurgankina, M. A., Nyashina, G. S., Strizhak, P. A. (2019). Prospects of Thermal Power Plants Switching from Traditional Fuels to Coal-Water Slurries Containing Petrochemicals. Sci. Total Environ., 671, 568–577. doi: 10.1016/j.scitotenv.2019.03.349

Glushkov, D. O., Strizhak, P. A., Chernetskiy, M. Yu. (2016). [Organovodougolnoe toplivo: problemy i dostizheniya (obzor).] Teploenergetika, 10, 31–41. (in Russian) doi: 10.1134/S0040363616100039

Zhang, K., Cao, Q., Jin, L., Li, P., Zhang, X. (2017). A Novel Route to Utilize Waste Engine Oil by Blending It With Water and Coal. J. Hazard. Mater. 332, 51–58. doi: 10.1016/j.jhazmat.2017.02.052

Gorlov, Ye. G. (2004). [Kompozitsionnye vodosoderzhashchie topliva iz ugley i nefteproduktov]. Khim. tverdogo topliva, (6), 50–61. (in Russian)

Pynchuk, V. A., Ghubynskyj, M. V., Potapov, B. B. (2008). [Yspoljzovanye vodougholjnogho toplyva y produktov egho pererabotky v эnerghetyke y metallurghyy]. Metalurghijna teplotekhnika: Zb. nauk. pr. Nacionaljnoji metalurghijnoji akademiji Ukrajiny. Dnepropetrovsk: Novaja ydeologhyja, 221–227. (in Ukraine)

Mokhov, V. F., Gorlov, Ye. G., Golovin, G. S. (1999). [Ugolno-uglevodorodnye kompozitsionnye topliva iz ugley Kuzbassa.] Khim. i prirodosberegayushchie tekhnologii ispolzovaniya uglya: Sbornik trudov mezhdunarodnoy konferentsii. M.:MGU, 69–71. (in Russian)

Tripathi, A.K., Ojha, D.K., Vinu, R. (2015.) Selective production of valuable hydrocarbons from waste motorbike engine oils via catalytic fast pyrolysis using zeolites. J. Anal. Appl. Pyrolysis. 114, 281–292. https://doi.org/10.1016/j.jaap.2015.06.009

Lapin, D. A., Lyrshchikov, S. Yu., Strizhak, P. A., Shevyrѐv, S. A. (2017). [Vliyanie fraktsionnogo sostava tverdykh komponentov vodougolnogo topliva na kharakteristiki zazhiganiya i goreniya] Khim. tverdogo topliva, 2, 23–29. (in Russian)

Makarov, A. S., Makarova, K. V. (2020) [Physico-chemical and technological bases for the formation of coagulation structures of technical dispersions]. Kyiv Scientific thought. (in Ukraine).

Gyulmaliev A.M., Golovin G.S., Gladun T.G. (2003). [Teoreticheskie osnovy khimii uglya]. M.: Izdatelstvo MGU. (in Russian)

Motornye masla Comma Xtech 5W-30. www.CommaOil.com

Urev, N. B. (1980). [Vysokokontsentrirovannye dispersnye sistemy]. M.: Khim.

Rebinder, P. A. (1979). [Izbrannye trudy. Poverkhnostnye yavleniya v dispersnykh sistemakh. Fiziko-khimicheskaya mekhanika], M.: Nauka. (in Russian).

Veselovskaya, Ye. V. (2017). [Issledovanie struktury i osobennostey adsorbtsionnykh vzaimodeystviy na poverkhnosti energeticheskikh ugley]. Izvestiya vysshikh uchebnykh zavedeniy. Severo-Kavkazskiy region. Seriya: Tekhnicheskie nauki, 2 (194), 40-45. (in Russian)

Kruchko, I. M., Makarov, A. S., Kosyghina, I. M.. (2020) [Vplyv ghranulometrychnogho skladu dyspersnoji fazy na reologhichni vlastyvosti maslo-vodo-vughiljnykh emuljsij na osnovi antracytu]. Vughlekhimichnyj zhur., (4), 4–7. (in Ukrainian). doi: 10.31081/1681-309X-2020-0-4-4-8.

A.V. Zenkov, D.V. Gvozdyakov, V.Ye. Gubin. (2020) [Vliyanie zhidkikh goryuchikh komponent na vyazkost vodougolnogo topliva]. Bulletin of the South Ural State University. Ser. Power Engineering. 20(3), 26–32. doi: 10.14529/power200303

Khodakov G.S. (2003). [Reologiya suspenziy. Teoriya fazovogo techeniya i ee eksperimentalnoe obosnovanie]. Rossiyskiy khim. Zhur,. 47(2),33–44. (in Russian).

Savitskiy, D. P. (2016) [Vliyanie vodno glitserinovykh smesey na reologicheskie svoystva suspenziy uglya]. Kolloidnyy zhur., 78(1), 95–100. DOI: https://doi.org/10.7868/S002329121601016X (in Russian).

Makarova, Ye. V., Makarov, A. S., Savitskiy, D. P. (2015). [Vliyanie vodorastvorimykh polimerov na stabilnost vodnykh suspenziy nizkozolnogo uglya]. Voprosy khimii i khimicheskoy tekhnologii, 1(99), 26–29. (in Ukrainian).

Published

2022-10-31

Issue

Section

Physical and inorganic chemistry