• Ramya Ch. Raghu Institute of Technology, India
  • Murali Krishna Madasu Department of Chemistry, S V K P & Dr K S Raju Arts & Sciennce College (A), India
  • K. Suresh Kumar Department of Chemistry, Kakinada, India
  • K. V. Pamavathi Department of Chemistry, GVP College of Degree & PG Courses, MVP Colony, India
  • M. Padma Department of Engineering Chemistry, AUCE (A), India



chemo-selective, p-Nitroaniline, green approach, reusable and high yielding


Cobalt Nanoparticles (Co- NP's) were used as an eco-friendly catalyst in a green approach format in water at room temperature to accomplish an efficient chemoselective reduction of p-Nitroaniline. In the presence of other reducible functional groups such as halo, alkoxy, carbonyl, and cyanide, the reductions are successful. The reactions are worth repeating since they are reusable and high yielding (around 90 percent).


Kundu, S., Lau, S., Liang, H. J. (2009). Shape-Controlled Catalysis by Cetyltrimethylammonium Bromide Terminated Gold Nanospheres, Nanorods, and Nanoprisms, Phys. Chem. C, 113, 5150−5156.

Chirea, M., Freitas, A., Vasile, B. S., Ghitulica, C., Pereira, C. M., Silva, F. (2011). Gold nanowire networks: synthesis, characterization, and catalytic activity, Langmuir, 27, 3906−3913. doi: 10.1021/la104092b

Kundu, S., Wang, K., Liang, H. J. (2009). Size-Selective Synthesis and Catalytic Application of Polyelectrolyte Encapsulated Gold Nanoparticles Using Microwave Irradiation, Phys. Chem. C, 113, 5157−5163.

Franco, C. (1996). On the polymerization of P-phenylenediamine, Eur. Polym. J, 32, 43−50.

Hsiao-Shu, L., Yu-Wen, L. (2009), Permeation of Hair Dye Ingredients, p-Phenylenediamine and Aminophenol Isomers, through Protective Gloves. Ann. Occup. Hyg., 53, 289−296.

Revathi, K., Shajesh. Palantavida, Baiju Kizhakkekilikoodayil, V., (2019). Effective Reduction of p-Nitroaniline to p-Phenylenediamine Using Cu-CuO Nanocomposite. Materials Today: Proceedings, 9(3), 633–638.

Edison, T. N. J. I., Sethuraman, M. G., Lee, Y. R. (2016). NaBH4 reduction of ortho and para-nitroaniline catalyzed silver nanoparticles synthesized using Tamarindus indica seed coat extract. Research on Chemical Intermediates, 42(2), 713–724.

Din, M. I., Khalid, R., Hussain, Z., Najeeb, J., Sahrif, A., Intisar, A., Ahmed, E., (2020). RSC Advances, 32, 18543–19133.

Naseem, Kh., Begum, R., Farooqi, Z. H. (2017). Catalytic reduction of 2-nitroaniline: a review. Environ Sci Pollut Res Int., 24(7), 6446–6460. doi: 10.1007/s11356-016-8317-2

Qureshi, A., Verma, V., Kapley, A., Purohit, H. J. (2007). Degradation of 4-nitroaniline by Stenotrophomonas strain HPC 135. Biodeterior. Biodegrad., 60, 215–218.

Li, K., Li, Y., Zheng, Z., Hazard, J. (2010). Batch and Flow-Through Column Studies for Cr(VI) Sorption to Activated Carbon Fiber. Mater., 178, 55––559.

Din, M. I., Najeeb, J., Hussain, Z., Khalid, R., Ahmad, G. (2020). Critical review on the chemical reduction of nitroaniline. Inorg. Nano-Met. Chem., 10, 19041–19058

Din, M. I., Tariq, M., Hussain, Z., Khalid, R. (2020). Inorg. Nano-Met. Chem., 1–6.

Lee, D. S., Park, K. S., Nam, Y. W., Kim, Y.-C., Lee, C. H. (1997). Hydrothermal decomposition and oxidation of p-nitroaniline in supercritical water. J. Hazard Mater., 56, 247–256.

Regan, M. R., Banerjee, I. A., (2006). Critical review on the chemical reduction of nitroaniline. Scr. Mater., 54, 909–914.

Das, P., Ghosh, S., Baskey (Sen), M. (2019). Heterogeneous catalytic reduction of 4-nitroaniline by RGO-Ni nanocomposite for water resource management J. of Materials Science: Materials in Electronics, 30, 19731–19737.

Liu, X., Ruiz, J., Astruc, D. (2018). Compared Catalytic Efficiency of Click-Dendrimer-Stabilized Late Transition Metal Nanoparticles in 4-Nitrophenol. J. Inorg. Organomet. Polym., 28, 399–406. doi: 10.1007/s10904-017-0666-x

Peng, G., Mavrikakis, M. (2015). Adsorbate Diffusion on Transition Metal Nanoparticles. Nano Lett. 15, 629–634.

Kim, Y., Torres, D. D., Jain, P. K. (2016). Activation Energies of Plasmonic Catalysts. Nano Lett., 16, 3399–3407.

Vijayaprasath, G., Murugan, R., Mahalingam, T., Ravi, G., Mater, J. (2015). Structural, optical and photoluminescence properties of copper and iron doped nanoparticles prepared by co-precipitation method. Sci. Mater. Electron., 26, 7205–7213. doi: 10.1007/s10854-016-5190-1

Wobbe, M. C. C., Zwijnenburg, M. A. (2015). Chemical trends in the optical properties of rocksalt nanoparticles. Phys. Chem. Chem. Phys., 17, 28892–28900.

Hu, Y., Ji, C., Wang, X., Huo, J., Liu, Q., Song, Y. (2017). The structural, magnetic and optical properties of TMn@(ZnO)42 (TM = Fe, Co and Ni) hetero-nanostructure. Sci. Rep. 7, 16485.

Anandha babu, G., Ravi, G. (2016). Magnetic evolution in transition metal-doped Co3+xMxO4 (M = Ni, Fe, Mg and Zn) nanostructures. Appl. Phys. A, 122, 177. doi:10.1007/s00339-016-9710-x

Willing, S., Lehmann, H., Volkmann, M., Klinke, C. (2017). Metal nanoparticle film–based room temperature Coulomb transistor. Sci. Adv., 3, 1603191. doi: 10.1126/sciadv.1603191

Quan, C., Qin, Z., Zhu, Y., Wang, Z., Zhang, J., Mao, W., Wang, X., Yang, J., Li, X., Huang, W. (2017). Graphene biosensors for bacterial and viral pathogens. J. Mater. Sci. Mater. Electron., 28, 3278–3284.

Jawoor, S. S., Patil, S. A., Kumbar, M., Ramawadgi, P. B. (2018). Synthesis and characterization of Rosa canina-mediated biogenic silver nanoparticles for anti-oxidant, antibacterial, antifungal, and DNA cleavage activities, J. Mol. Struct., 1164, 378–385.

Khusnuriyalova, A. F., Caporali, M., Hey-Hawkins, E., Sinyashin, O. G., Yakhvarov, D. G. (2021). Preparation of Cobalt Nanoparticles. Eur. J. Inorg. Chem. 3023–3047.

Varaprasad, Т., Boddeti, Govindh, B., Venkateswara, R. (2017). Green Synthesized Cobalt Nanoparticles using Asparagus racemosus root Extract & Evaluation of Antibacterial activity. International Journal of ChemTech Research, 10(9), 339–345.

Kundu, S., Wang, K., Liang, H. (2009). Size-Selective Synthesis and Catalytic Application of Polyelectrolyte Encapsulated Gold Nanoparticles Using Microwave Irradiation. J. Phys. Chem. C, 113, 5157–5163.

Reddy, V., Torati, R. S., Sunjong, Kim, C. G. (2013). Fe3O4/TiO2 core/shell nanocubes: Single-batch surfactantless synthesis, characterization and efficient catalysts for methylene blue degradation. Ind. Eng. Chem. Res., 52(2), 556−564.