REDUCTION OF p-NITROANILINE USING PLANT MEDIATED Co-NPs: A GREEN PERSPECTIVE
DOI:
https://doi.org/10.15421/jchemtech.v30i1.250883Keywords:
chemo-selective, p-Nitroaniline, green approach, reusable and high yieldingAbstract
Cobalt Nanoparticles (Co- NP's) were used as an eco-friendly catalyst in a green approach format in water at room temperature to accomplish an efficient chemoselective reduction of p-Nitroaniline. In the presence of other reducible functional groups such as halo, alkoxy, carbonyl, and cyanide, the reductions are successful. The reactions are worth repeating since they are reusable and high yielding (around 90 percent).
References
Kundu, S., Lau, S., Liang, H. J. (2009). Shape-Controlled Catalysis by Cetyltrimethylammonium Bromide Terminated Gold Nanospheres, Nanorods, and Nanoprisms, Phys. Chem. C, 113, 5150−5156. https://doi.org/10.1021/jp811331z
Chirea, M., Freitas, A., Vasile, B. S., Ghitulica, C., Pereira, C. M., Silva, F. (2011). Gold nanowire networks: synthesis, characterization, and catalytic activity, Langmuir, 27, 3906−3913. doi: 10.1021/la104092b
Kundu, S., Wang, K., Liang, H. J. (2009). Size-Selective Synthesis and Catalytic Application of Polyelectrolyte Encapsulated Gold Nanoparticles Using Microwave Irradiation, Phys. Chem. C, 113, 5157−5163.
Franco, C. (1996). On the polymerization of P-phenylenediamine, Eur. Polym. J, 32, 43−50.
Hsiao-Shu, L., Yu-Wen, L. (2009), Permeation of Hair Dye Ingredients, p-Phenylenediamine and Aminophenol Isomers, through Protective Gloves. Ann. Occup. Hyg., 53, 289−296. https://doi.org/10.1093/annhyg/mep009
Revathi, K., Shajesh. Palantavida, Baiju Kizhakkekilikoodayil, V., (2019). Effective Reduction of p-Nitroaniline to p-Phenylenediamine Using Cu-CuO Nanocomposite. Materials Today: Proceedings, 9(3), 633–638. https://doi.org/10.1016/j.matpr.2018.10.386
Edison, T. N. J. I., Sethuraman, M. G., Lee, Y. R. (2016). NaBH4 reduction of ortho and para-nitroaniline catalyzed silver nanoparticles synthesized using Tamarindus indica seed coat extract. Research on Chemical Intermediates, 42(2), 713–724.
Din, M. I., Khalid, R., Hussain, Z., Najeeb, J., Sahrif, A., Intisar, A., Ahmed, E., (2020). RSC Advances, 32, 18543–19133.
Naseem, Kh., Begum, R., Farooqi, Z. H. (2017). Catalytic reduction of 2-nitroaniline: a review. Environ Sci Pollut Res Int., 24(7), 6446–6460. doi: 10.1007/s11356-016-8317-2
Qureshi, A., Verma, V., Kapley, A., Purohit, H. J. (2007). Degradation of 4-nitroaniline by Stenotrophomonas strain HPC 135. Biodeterior. Biodegrad., 60, 215–218.
Li, K., Li, Y., Zheng, Z., Hazard, J. (2010). Batch and Flow-Through Column Studies for Cr(VI) Sorption to Activated Carbon Fiber. Mater., 178, 55––559.
Din, M. I., Najeeb, J., Hussain, Z., Khalid, R., Ahmad, G. (2020). Critical review on the chemical reduction of nitroaniline. Inorg. Nano-Met. Chem., 10, 19041–19058
Din, M. I., Tariq, M., Hussain, Z., Khalid, R. (2020). Inorg. Nano-Met. Chem., 1–6.
Lee, D. S., Park, K. S., Nam, Y. W., Kim, Y.-C., Lee, C. H. (1997). Hydrothermal decomposition and oxidation of p-nitroaniline in supercritical water. J. Hazard Mater., 56, 247–256.
Regan, M. R., Banerjee, I. A., (2006). Critical review on the chemical reduction of nitroaniline. Scr. Mater., 54, 909–914.
Das, P., Ghosh, S., Baskey (Sen), M. (2019). Heterogeneous catalytic reduction of 4-nitroaniline by RGO-Ni nanocomposite for water resource management J. of Materials Science: Materials in Electronics, 30, 19731–19737.
Liu, X., Ruiz, J., Astruc, D. (2018). Compared Catalytic Efficiency of Click-Dendrimer-Stabilized Late Transition Metal Nanoparticles in 4-Nitrophenol. J. Inorg. Organomet. Polym., 28, 399–406. doi: 10.1007/s10904-017-0666-x
Peng, G., Mavrikakis, M. (2015). Adsorbate Diffusion on Transition Metal Nanoparticles. Nano Lett. 15, 629–634. https://doi.org/10.1021/nl504119j
Kim, Y., Torres, D. D., Jain, P. K. (2016). Activation Energies of Plasmonic Catalysts. Nano Lett., 16, 3399–3407. https://doi.org/10.1021/acs.nanolett.6b01373
Vijayaprasath, G., Murugan, R., Mahalingam, T., Ravi, G., Mater, J. (2015). Structural, optical and photoluminescence properties of copper and iron doped nanoparticles prepared by co-precipitation method. Sci. Mater. Electron., 26, 7205–7213. doi: 10.1007/s10854-016-5190-1
Wobbe, M. C. C., Zwijnenburg, M. A. (2015). Chemical trends in the optical properties of rocksalt nanoparticles. Phys. Chem. Chem. Phys., 17, 28892–28900.
Hu, Y., Ji, C., Wang, X., Huo, J., Liu, Q., Song, Y. (2017). The structural, magnetic and optical properties of TMn@(ZnO)42 (TM = Fe, Co and Ni) hetero-nanostructure. Sci. Rep. 7, 16485.
Anandha babu, G., Ravi, G. (2016). Magnetic evolution in transition metal-doped Co3+xMxO4 (M = Ni, Fe, Mg and Zn) nanostructures. Appl. Phys. A, 122, 177. doi:10.1007/s00339-016-9710-x
Willing, S., Lehmann, H., Volkmann, M., Klinke, C. (2017). Metal nanoparticle film–based room temperature Coulomb transistor. Sci. Adv., 3, 1603191. doi: 10.1126/sciadv.1603191
Quan, C., Qin, Z., Zhu, Y., Wang, Z., Zhang, J., Mao, W., Wang, X., Yang, J., Li, X., Huang, W. (2017). Graphene biosensors for bacterial and viral pathogens. J. Mater. Sci. Mater. Electron., 28, 3278–3284.
Jawoor, S. S., Patil, S. A., Kumbar, M., Ramawadgi, P. B. (2018). Synthesis and characterization of Rosa canina-mediated biogenic silver nanoparticles for anti-oxidant, antibacterial, antifungal, and DNA cleavage activities, J. Mol. Struct., 1164, 378–385.
https://doi.org/10.1016/j.heliyon.2019.e02980
Khusnuriyalova, A. F., Caporali, M., Hey-Hawkins, E., Sinyashin, O. G., Yakhvarov, D. G. (2021). Preparation of Cobalt Nanoparticles. Eur. J. Inorg. Chem. 3023–3047. https://doi.org/10.1002/ejic.202100367
Varaprasad, Т., Boddeti, Govindh, B., Venkateswara, R. (2017). Green Synthesized Cobalt Nanoparticles using Asparagus racemosus root Extract & Evaluation of Antibacterial activity. International Journal of ChemTech Research, 10(9), 339–345.
Kundu, S., Wang, K., Liang, H. (2009). Size-Selective Synthesis and Catalytic Application of Polyelectrolyte Encapsulated Gold Nanoparticles Using Microwave Irradiation. J. Phys. Chem. C, 113, 5157–5163. https://doi.org/10.1021/jp9003104
Reddy, V., Torati, R. S., Sunjong, Kim, C. G. (2013). Fe3O4/TiO2 core/shell nanocubes: Single-batch surfactantless synthesis, characterization and efficient catalysts for methylene blue degradation. Ind. Eng. Chem. Res., 52(2), 556−564.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Днипровский национальный университет имени Олеся Гончара
This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors reserve the right of attribution for the submitted manuscript, while transferring to the Journal the right to publish the article under the Creative Commons Attribution License. This license allows free distribution of the published work under the condition of proper attribution of the original authors and the initial publication source (i.e. the Journal)
- Authors have the right to enter into separate agreements for additional non-exclusive distribution of the work in the form it was published in the Journal (such as publishing the article on the institutional website or as a part of a monograph), provided the original publication in this Journal is properly referenced
- The Journal allows and encourages online publication of the manuscripts (such as on personal web pages), even when such a manuscript is still under editorial consideration, since it allows for a productive scientific discussion and better citation dynamics (see The Effect of Open Access).