SPECTROPHOTOMETRIC STUDY OF ZIRCONIUM WITH DINITROBENZENE-AZOPYROCATECHOL AND MULTI-LIGAND COMPLEXES WITH OP-10

Authors

DOI:

https://doi.org/10.15421/jchemtech.v30i3.252251

Keywords:

Keywords: dinitrobenzene-azopyrocatechol, zirconium, Box-Behnken design, extraction.

Abstract

The proposed method was used to study the multi-ligand complex of zirconium with 1.2-dinitrobenzene-azopyrocatechol and OP-10 following spectrophotometric methods. The optimization procedure was confirmed by the Box Behnken design. Maximum extraction of zirconium complex occurred in the pH range of 1.03.8.

The effect of temperature, solvents and their volumes on the absorption was studied. Under optimal conditions: 500 µL of chloroform was selected as extraction solvent, 400 µL of acetone was used as a dispersive solvent,pH was 2.0, λmax = 560 nm. The linear range, limit of detection and lgβk were found to be 0.04–5.8 µg mL–1, 0.08 µg mL–1 and 6.86, resp. Moreover, the effect of interference ions, which were present in water was investigated. The proposed method was applied for the determination of zirconium in various water samples.

References

Amin, A. S. (2015). Novel approach for the determination of zirconium by solid-phasespectrophotometry, Journal of Taibah University for Science, 9(2), 227–236. https://doi.org/10.1016/j.jtusci.2014.11.003

Hedrick, J. B. (2007). Rare Earths (Advanced Release), Minerals Yearbook; U.S. Geological Survey: Reston, VA, USA, 2009. http://www.usmagneticmaterials.com/documents/USGS-RE-MineralsYearbook.pdf

Ghasemi, J. B., Zolfonoun, E. (2010). Simultaneous spectrophotometric determination of trace amounts of uranium, thorium, and zirconium using the partial least squares method after their preconcentration by alpha-benzoin oxime modified Amberlite XAD-2000 resin. Talanta, 80(3), 1191–1197.

doi.org/10.1016/j.talanta.2009.09.007

Abbaspour, A., Baramakeh, L. (2002). Simultaneous determination of zirconium and molybdenum by first-derivative spectrophotometry. Anal. Sci., 18(10), 1127–1130.

doi.org/10.2116/analsci.18.1127

Lide, D. R. (2007). CRC Handbook of Chemistry and Physics. J. Am. Chem. Soc., 129(3), 724. https://doi.org/10.1021/ja069813z.

Al-Kady, A. S. (2012). Selective and sensitive spectrophotometric method for the determination of trace amounts of zirconium in environmental and biological samples using 4-chloro-N-(2,6-dimethylphenyl)-2-hydroxy-5-sulfamoylbenzamide. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 97, 284–289.

https://doi.org/10.1016/j.saa.2012.06.019

Jain, A., Prakash, O., Kakkar, L. R. (2010). Spectrophotometric Determination of Zirconium with 5,7-Dibromo-8-hydroxyquinoline in presence of Thiocyanate. Journal of Analytical Chemistry, 65(8), 820–824. https://doi.org/10.1134/s1061934810080101

Lasheen, T. A., Hussein, G. M., Khawassek, Y. M., Cheira, M. F. (2013). Spectrophotometric determination of zirconium (IV) and hafnium (IV) with pyrazolo (1, 5-a) quinazolin-6-one derivative reagent. Analytical chemistry an Indian Journal, 12(10), 368–376. https://www.tsijournals.com/articles/spectrophotometric-determination-of-zirconium-iv-and-hafnium-iv-with-pyrazolo-1-5a-quinazolin6one-derivative-reagent.pdf

Pourreza, N., Parham, H., Shiri, S., (2010). Determination of Trace Amounts of Zirconium by Flotation – Spectrophotometric Method, Journal of the Korean Chemical Society, 54(3), 283–286. DOI:10.5012/jkcs.2010.54.3.283

Wang, Z.P., Qian, Y.H., Chen, G.S., Cheng, K.L. (1998). Studies on simultaneous fluorescence-spectrophotometric determination ofultratrace niobium(V), tantalum(V), and zirconium(IV) using par-tial least-squares algorithm, Microchemical Journal, 60(3), 271–281.

https://doi.org/10.1006/mchj.1998.1661

Afzal, M., Hanif, J., Hanif, I., Qadeer, R., Saleem, M., (1990). Determination of zirconium and hafnium in solution by X-ray fluorescence spectrometry, Journal of Radioanalytical and Nuclear Chemistry, 139(2), 203–214. https://doi.org/10.1007/bf02061804

Purohit, R., Devi, S. (1997). Determination of nanogram levels of zirco-nium by chelating ion exchange and on-line preconcentration inflow injection UV–visible spectrophotometry, Talanta, 44(3), 319–326. doi: 10.1016/s0039-9140(96)02032-2

Abbaspour, A., Baramakeh, L. (2002). Dual-wavelength-correction spectrophotometry for selective determination of Zr, Talanta, 57(4), 807–812. doi: 10.1016/s0039-9140(02)00067-x

Peralta-Zamora, P., Jose Martins, W. (1999). Anomalies in the spectrophotometric and extractive behaviour of zirconium and hafnium: Evidence of a synergistic effect, Talanta, 49(4), 937–941. doi: 10.1016/s0039-9140(99)00090-9

Uysal, U.D., Huseyinli, A.A., Guray, T. (2011). Rapid direct spec-trophotometric determination of zirconium (IV) in alloys with 2,2/3,4-tetrahydroxy-3/-sulpho-5-carboxyazobenzene reagent, Journal of scientific and industrial research, 70, 45–50.

Varghese, A., George, L. (2012). Simultaneous first order derivative spectrophotometric determination of vanadium and zirconium in alloy steels and minerals, Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy, 95, 46–52. doi:10.1016/j.saa.2012.04.092

Dedkova, V. P., Shvoeva, O. P., Savvin, S. B., (2013). Sorption–Spectrophotometric Determination of Zirconium and Chromium(VI) from a Single Sample on a Two-Layer Support Using Arsenazo III and 1,5-Diphenylcarbazide, Journal of Analytical Chemistry, 68(2), 117–122. doi:10.1134/S1061934813020068

Karve, M., Rajgor, R. V. (2007). Solid phase extraction of lead on octadecyl bonded silica membrane disk modified with Cyanex302 and determination by flame atomic absorption spectrometry, Journal of Hazardous Materials, 141(3), 607–613. doi: 10.1016/j.jhazmat.2006.07.013

Safavi, A., Iranpoor, N., Saghir, N., Momeni, S. (2006). Glycerol–silica gel: A new solid sorbent for preconcentration and determination of traces of cobalt(II) ion, Analytica Chimica Acta, 569(1), 139–144. doi:10.1016/j.aca.2006.03.079

Suvardhan, K., Kumar, K. S., Rekha, D., Jayaraj, B., Naidu, G. K., Chiranjeevi, P. (2006). Erratum to “Preconcentration and solid-phase extraction of beryllium, lead, nickel, and bismuth from various water samples using 2-propylpiperidine-1-carbodithioate with flame atomic absorption spectrometry (FAAS) Talanta, 68(3), 735–740.

https://doi.org/10.1016/j.talanta.2005.05.020

Bulut, V. N., Gundogdu, A., Duran, C., Senturk, H. B., Soylak, M., Elci, L., Tufekci, M. (2007). A multi-element solid-phase extraction method for trace metals determination in environmental samples on Amberlite XAD-2000. Journal of Hazardous Materials, 146(1), 155–163. https://doi.org/10.1016/j.jhazmat.2006.12.013

Tuzen, M., Suylak, M., Elci, L. (2005). Multi-element pre-concentration of heavy metal ions by solid phase extraction on Chromosorb 108. Analtica Chimica Acta, 548(1), 101–108.

https://doi.org/10.1016/j.aca.2005.06.005

Firdaus, M.L., Norisuye, K., Sato T., Urushihara, S., Nak-agawa, Y., Umetani, S., Sohrin, Y. (2007). Preconcentration of Zr, Hf,Nb, Ta and W in seawater using solid-phase extraction onTSK-8-hydroxyquinoline resin and determination by inductivelycoupled plasma-mass spectrometry, Analytica Chimica Acta, 583(2), 296–302. https://doi.org/10.1016/j.aca.2006.10.033

Faghihian, H., Tadi, M. K. (2010). A novel solid-phase extraction method for separation and preconcentration of zirconium, Microchimica Acta, 168(1), 147–152. https://doi.org/10.1007/s00604-009-0273-9.

Baytak, S., Turker, A. R. (2006). Application of ram horn powder (RHP) for the preconcentration and determination of copper in various samples by flame atomic absorption spectrometry. Journal of Analytical Chemistry, 61(5), 483–489.

https://doi.org/10.1134/S1061934806050091.

Gode, F., Pehlivan, E. (2007). Sorption of Cr(III) onto chelating b-DAEG-sporopollenin and CEP-sporopollenin resins, Bioresource Technology, 98(4), 904–911. doi:10.1016/j.biortech.2006.02.043.

Pourreza N., Mouradzadegun, A., Mohammadi, S. (2011). Solid phase extraction of zirconium as arsenazo(III) complex on agar and spectrophotometric determination, Journal of the Iranian Chemical Society, 8(4), 951–957. https://doi.org/10.1007/BF03246550

Rezaee, M., Assadi, Y., Millani Hosseini, M. R., Aghaee, E., Ahmadi, F., Berijani, S. (2006). Determination of organic compounds in water using dispersive liquid–liquid microextraction, Journal of Chromatography A., 1116(1), 1–9. https://doi.org/10.1016/j.chroma.2006.03.007.

Fatahi, N., Samadi, S., Assadi, Y., Milani Hosseini, M. R. (2007). Solid-phase extraction combined with dispersive liquid–liquid microextraction-ultra preconcentration of chlorophenols in aqueous samples, Journal of Chromatography A., 1169(1), 63–69.

https://doi.org/10.1016/j.chroma.2007.09.002.

Mohammadi, S. Z., Afzali, D., Taher, M. A., Baghelani, Y. M. (2009). Ligandless dispersive liquid–liquid microextraction for the separation of trace amounts of silver ions in water samples and flame atomic absorption spectrometry determination Talanta, 80(2), 875–879. https://doi.org/10.1016/j.talanta.2009.08.009.

Korestelev, P. P. (1964). [Preparation of solutions for chemical and analytical works]. M.: Nauka. (In Russian)/

Bishgin, A. T., (2019). Surfactant-Assisted Emulsification ond Surfactant-Based Dispersive Liquid-Liquid Microextraction Method for Determination of Cu(II) in Food and Water Samples by Flame Atomic Absorbtion Spectrometry, Journal of AOAC İnternational, 102(5), 1516–1522. https://doi.org/10.1093/jaoac/102.5.1516.

Agarwal, K., Patel, K. S., Shrivas, K. (2009). Development of surfactant assisted spectrophotometric method for determination of selenium in waster water samples, Journal of Hazardous Materials, 161(2-3), 1245–1249. https://doi.org/10.1016/j.jhazmat.2008.04.082.

Shrivas, K., Dewangan, K. Ahmed, A. (2016). Surfactant-based dispersive liquid-liquid microextraction for the determination of zink in environmental water samples using flame atomic absorbtion spectrometry. Analytical Methods, 8(27), 5519–5525.

https://doi.org/10.1039/C6AY01277A

Downloads

Published

2022-10-31