COMPARATIVE STUDY ON CORROSION OF ICOSAHEDRAL AND DECAGONAL QUASICRYSTALS OF Al-BASED ALLOYS IN ACIDS

Authors

  • Volodymyr A. Polonskyy Oles Honchar Dnipro National University, Ukraine
  • Olena V. Sukhova Oles Honchar Dnipro National University, Ukraine
  • Volodymyr A. Ivanov Oles Honchar Dnipro National University, Ukraine

DOI:

https://doi.org/10.15421/jchemtech.v30i2.253020

Keywords:

icosahedral and decagonal quasicrystals, aqueous acidic solutions, specific mass change, corrosion rate, phases susceptible to corrosion

Abstract

The corrosion properties of Al–Cu–Fe and Al–Cu–Co alloys that form quasicrystalline phases differing in crystallographic order, respectively three-dimensional icosahedral y-phase and two-dimensional decagonal D-phase, were investigated in this work. The structure of the alloys was studied by methods of quantitative metallographic, atomic absorption spectroscopic, X-ray diffraction, and scanning electron microscopic analyses. Corrosion was explored for 1–4 hours by gravimetric method in HNO3, HCl, H3PO4, and H2SO4 aqueous acidic solutions (рН = 1.0) at room temperature. After 4 testing hours, the maximal specific mass loss of the Al–Cu–Fe alloys was established to occur in the sulphuric acid and minimal mass loss – in the ortophosphoric acid. For the Al–Cu–Co alloys, maximal specific mass loss was observed in the ortophosphoric acidic solution and minimal – in the nitric acidic solution. In all investigated acidic media, the Al–Cu–Co alloys forming decagonal quasicrystals showed higher resistance to corrosion than the Al–Cu–Fe alloys forming icosahedral quasicrystals. The results of corrosion tests were explained considering the surface morphology of the samples exposed to acidic attacks studied by scanning electron microscopy. The phases containing less iron in the structure of the Al–Cu–Fe alloys or phases containing more cobalt in the structure of the Al–Cu–Co alloys are less susceptible to corrosion.

References

Ostash, O. P., Kulyk, V. V., Lenkovskiy, T. M., Duriagina, Z. A., Vira, V. V., Tepla, T. L. (2018). Relationships Between the Fatigue Crack Growth Resistance Characteristics of a Steel and the Tread Surface Damage of Railway Wheel. Arch. Mater. Sci. Eng., 90(2), 49–55. https://doi.org/10.5604/ 01.3001.0012.0662

Sukhova, О. V. (2020) The Effect of Carbon Content and Cooling Rate on the Structure of Boron-Rich Fe–B–С Alloys. Phys. Chem. Solid St., 21(2), 355–360. https://doi.org/10.15330/pcss.21.2.355-360.

Spiridonova, I. M., Sukhovaya, E. V., Butenko, V. F., Zhudra, А. P., Litvinenko, А. I., Belyi, А. I. (1993) Structure and Properties of Boron-Bearing Iron Granules for Composites. Powder Metall. Met. Ceram, 32(2), 139–141.

https://doi.org/10.1007/BF00560039.

Duryagina, Z. A., Bespalov, S. A., Borysyuk, A. K., Pidkova, V. Ya. (2011) Magnetometric analysis of surface layers of 12X18H10T steel after ion beam nitriding. Metallofiz. Noveishie Technol., 33(5), 615–622.

Vashchenko, A. P., Spiridonova, I. М., Sukhovaya, E. V. (2000) Deformation and Fracture of Structural Materials Under High-Rate Strain. Metallurgia, 39(2), 89–92.

Tkachenko, R., Duriagina, Z., Lemishka, Z., Izonin, I., Trostianchyn A. (2018) Development of Machine Learning Method of Titanium Alloy Properties Identification in Additive Technologies. East-Eur. J. Enterp. Technol., 3(12), 23–31. https://doi.org/10.15587/1729-4061.2018.134319.

Chabak, Y. G., Fedun, V. I., Shimizu, K., Efremenko, V. G., Zurnadzhy, V. I. (2016) Phase-Structural Composition of Coating Obtained by Pulsed Plasma Treatment Using Eroded Cathode of T1 High Speed Steel. Probl. At. Sci. Technol, 104(4), 100–106.

Zurnadzhy, V. I., Efremenko, V. G., Petryshynets, I., Shimizu, K., Brykov, M. N., Kushchenko, I. V., Kudin, V. V. (2020) Mechanical Properties of Carbide-Free Lower Bainite in Complex-Alloyed Constructional Steel: Effect of Bainitizing Treatment Parameters. Kovove Materialy, 58, 129–140.https://doi.org/10.4149/km_2020_2_129.

Trembach, B., Grin, A., Subbotina, V., Vynar, V., Knyazev, S., Vakiev, V., Trembach, I., Kabatskyi, O. (2021) Effect of Exothermic Addition (CuO–Al) on the Structure, Mechanical Properties and Abrasive Wear Resistance of the Deposited Metal During Self-Shielded Flux-Cored Arc Welding. Tribol. Ind., 43(3),452–464. https://doi.org/10.24874/ti.1104.05.21.07.

Sukhova, О. V., Syrovatko, Yu. V. (2011) Features of Structurization of Composite Materials of the Solution-and-Diffusion Type. Metallofiz. Noveishie Tekhnol., 33(Special Issue), 371–378.

Zhong, J. B., Chen, Y. J., Teng, L. L., Shao, X. J., Han, B., Yan, F. (2021) Research Progress on Al-based Quasicrystal Films/coatings. China Surf. Eng., 34(5), 105–116. https://doi.org/10.11933/j.issn.1007-9289.20210530002.

Zakharova, I., Royanov, V., Chigarev, V. (2021) Airflow Dynamics and Aluminum Coating Oxidation Behavior under Electric-Arc Spraying with Airflow Pulsations. Appl. Sci., 11(18), 8444. https://doi.org/10.3390/app11188444.

Młynarek-Żak, K., Wierzbicka-Miernik, A., Kądziołka-Gaweł, M., Czeppe, T., Radoń, A., Babilas, R. (2022) Electrochemical Characterization of Rapidly Solidified Al–(Cr,Cu,Ni,Y,Zr)–Fe Alloys. Electrochim. Acta, 1, 139836. https://doi.org/10.1016/j.electacta.2022.139836.

Babilas, R., Bajorek, A., Spilka, M., Radon, A., Lonski, W. (2020) Structure and Corrosion Resistance of Al–Cu–Fe Alloys. Prog. Nat. Sci., 30(3), 393–401. https://doi.org/10.1016/j.pnsc.2020.06.002.

Parsamehr, H., Lu, Y.-J., Lin, T.-Y., Tsai, A.-P., Lai, C.-H. (2019) In-Situ Observation of Local Atomic Structure of Al–Cu–Fe Quasicrystal Formation. Sci. Rep., 9, 1245-1–9. https://doi.org/10.1038/s41598-018-37644-x.

Zou, Y., Wheeler, J. M., Sologubenko, A. S., Michler, J., Streurer, W., Spolenak, R. (2016) Bridging Room-Temperature and High-Temperature Plasticity in Decagonal Al–Ni–Co Quasicrystal by Microthermomechanical Testing. Phil. Mag., 96(32–34), 3356–3378. https://doi.org/10.1080/14786435.2016.1234722.

Luca, B., Pham, J., Steinhardt, P. J. (2018) Previously Unknown Quasicrystal Periodic Approximant Found in Space. Sci. Rep., 8, 1–8. https://doi.org/10.1038/s41598-018-34375-x.

Stadnik, Z. M. (1999). Physical Properties of Quasicrystals. Berlin Heidelberg: Springer-Verlag. https://doi.org/10.1007/978-3-642-58434-3.

Trebin, H. R. (2003) Quasicrystals: Structure and Physical Properties. Weinheim: Wiley-VCH Verlag GmbH & Co. https://doi.org/10.1002/3527606572.

Dubois, J.-M. (2012) Properties and Applications of Quasicrystals and Complex Metallic Alloys. Chem. Soc. Rev., 41, 4760–6777. https://doi.org/10.1039/C2CS35110B.

Huttunen-Saarivirta, E. (2004) Microstructure, Fabrication and Properties of Quasicrystalline Al–Cu–Fe Alloys: A Review. J. Alloys Compd., 363(1–2), 150–174. https://doi.org/10.1016/S0925-8388(03)00445-6.

Sukhova, O. V. Polonskyy, V. A. Ustinova, K. V. (2019) Corrosion-Electrochemical Properties of Quasicrystalline Al–Cu–Fe–(Si,B) and Al–Ni–Fe Alloys in NaCl Solution. Voprosy Khimii i Khimicheskoi Tekhnologii, 124(3), 46–52. https://doi.org/10.32434/0321-4095-2018-121-6-77-83

Sukhova, О. V., Polonskyy, V. A., Ustinova, K. V. (2017) Structure Formation and Corrosion Behaviour of Quasicrystalline Al–Ni–Fe Alloys. Phys. Chem. Solid St., 18(2), 222–227. https://doi.org/10.15330/PCSS.18.2.222-227.

Rampulla, D. M., Mancinelli, C. M., Brunell, I. F., Gellman, A. J. (2005) Oxidative and Tribological Properties of Amorphous and Quasicrystalline Approximant Al–Cu–Fe Thin Films. Langmuir, 6, 4547–4553. https://doi.org/10.1021/la0469093.

Wolf, W., Bolfarini, C., Kiminami, C. S., Botta, W. J. (2021) Recent Developments on Fabrication of Al-Matrix Composites Reinforced with Quasicrystals: From Metastable to Conventional Processing. J. Mater. Res., 36, 281–297. https://doi.org/10.1557/s43578-020-00083-4.

Sukhovaya, Е. V. (2013) Structural Approach to the Development of Wear-Resistant Composite Materials. J. Superhard Mater. 35(5), 277–283. https://doi.org/10.3103/S106345761305002X.

Jithesh, K., Prabhu, T. R., Anant, R. V., Arivarasu, M., Srinivasan, A., Mishra, R. K., Arivazhagan, N. (2019) An Overview of Quasicrystal Reinforced Magnesium Metal Matrix Composites. Mater. Sci. Forum., 969, 218–224. https://doi.org/10.4028/www.scientific. net/MSF.969.218.

Kamalnath, M., Mohan, B., Singh, A., Thirumavalavan, K. (2020) Development of Al1070 Quasicrystal (Al65Cu23Fe12) Composites Using Friction Stir Processing and Its Mechanical Characterization. Mater. Res. Express, 7(2), 1–11.

https://doi.org/10.1088/2053-1591/ab71c5

Yadav, T. P., Singh, D., Tiwari, R. S., Srivastava, O. N. (2012) Enhanced Microhardness of Mechanically Activated Carbon-Quasicrystal Composite. J. Mater. Lett., 80, 5–8. https://doi.org/10.1016/J.MATLET.2012.04.034.

Krawczyk, J., Gurdziel, W., Bogdanowicz, W., Flisinski, K. (2010) Temperature Influence on Stress-Strain Relationship of Al–Cu–Fe Crystal-Quasicrystal Composites. Solid State Phenom., 163, 282–285. https://doi.org/10.4028/www.scientific.net/SSP.163.282.

Rosas, G., Reyes-Gasga, J., Pérez, R. (2007) Morphological Characteristics of the Rapidly and Conventionally Solidified Alloys of the AlCuFe System. Mater. Charact., 58(8–9), 765–770. https://doi.org/10.1016/j.matchar.2006.12.004.

Duneau, M., Audier, M. (2009) Structural Characteristics of Pentagonal Al–Cu–Fe phases. Phil. Mag., 77(3), 675–688. https://doi.org/10.1080/01418619808224076.

Guedes de Lima, B. A., Gomes, R. G., Guedes de Lima, S. J., Dragoe, D., Barthes-Labrousse, M. G., Kouitat-Njiwa, R., Dubois, J. M. (2016) Self-Lubricating, Low-Friction Wear-Resistant Al-Based Quasicrystalline Coatings. Sci. Technol. Adv. Mater., 17(1), 71–79. https://doi.org/10.1080/14686996.2016.1152563.

Bogdanowicz, W., Krawczyk, J. (2010) X-ray Topography Study of Deformed Composites Obtained by Directional Solidification of Al–Cu–Co alloy. Cryst. Res. Technol., 45(12), 1321–1325. https://doi.org/10.1002/crat.201000313.

Holland-Moritz, D., Jacobs, G., Egry, I. (2000) Investigations of the Short-Range Order in Melts of Quasicrystal-Forming Al–Cu–Co alloys by EXAFS. Mater. Sci. Eng., A294-296, 369–372. https://doi.org/10.1016/S0921-5093(00)01126-6.

Kang, Y., Zhou, C., Gong, S., Xu, H. (2005) Corrosion of Al–Cu–Fe–Cr Quasicrystalline Coating. Mater. Sci. Forum., 475–479, 3355–3358. https://doi.org/10.4028/www.scientific.net/ MSF.475-479.3355.

Rudiger, A., Koster, U. (2000) Corrosion Behavior of Al–Cu–Fe Quasicrystals. Mater. Sci. Eng., A294–296, 890–893. https://doi.org/10.1016/S0921-5093(00)01037-6.

Huttunen-Saarivirta, E., Tiainen, T. (2004) Corrosion Behaviour of Al–Cu–Fe Alloys Containing a Quasicrystalline Phase. Mater. Chem. Phys., 85(2–3), 383–395. https://doi.org/10.1016/j.matchemphys.2004.01.025.

Sukhova, О. V., Polonskyy, V. A., Ustinova, K. V. (2018). Microstructure and Corrosion Properties of Quasicrystal Al–Cu–Fe Alloys Alloyed with Si and B in Acidic Solutions. Voprosy Khimii i Khimicheskoi Tekhnologii, 121(6), 77–83.

https://doi.org/10.32434/0321-4095-2018-121-6-77-83.

Ryabtsev, S. I., Polonskyy, V. A., Sukhova, О. V. (2020) Structure and Corrosion of Quasicrystalline Cast Alloys and Al–Cu–Fe Film Coatings. Mater. Sci., 56(2), 263–272 https://doi.org/ 10.1007/s11003-020-00428-8

Zharskyy, I. M., Ivanova, N. P., Kuis, D. V., Svidunovich, N. A. (2012) Corrosion and Protection of Metal Constructions and Equipment. Мinsk: Vysh. shk.

Sukhova, О. V., Polonskyy, V. A. (2020) Structure and Corrosion of Quasicrystalline Cast Al–Co–Ni and Al–Fe–Ni Alloys in Aqueous NaCl Solution. East Eur. J. Phys., 3, 5–10. https://doi.org/10.26565/2312-4334-2020-3-01

Sukhova, О. V., Syrovatko, Yu. V. (2019) New Metallic Materials and Synthetic Metals. Metallofiz. Noveishie Tekhnol., 41(9), 1171–1185. https://doi.org/10.15407/mfint.41.09.1171

Sukhova, О. V., Polonskyy, V. A. (2021) Peculiarities in the Structure Formation and Corrosion of Quasicrystalline Al65Co20Cu15 Alloy in Neutral and Acidic Media. East Eur. J. Phys., 3, 49–54. https://doi.org/10.26565/2312-4334-2021-3-07.

Published

2022-07-25

Issue

Section

Physical and inorganic chemistry