QUANTUM CHEMICAL MODELING OF Cu2+ ACIDOCHLOROCOMPLEXES CONTAINING ANIONS OF ORGANIC ACIDS

Authors

  • Victor F. Vargalyuk Oles Honchar Dnipro National University, Ukraine
  • Volodymyr A. Polonskyy Oles Honchar Dnipro National University, Ukraine
  • Yuliia D. Kurasova Oles Honchar Dnipro National University, Ukraine

DOI:

https://doi.org/10.15421/jchemtech.v30i1.253575

Keywords:

Cu2 complexes, Cl−, anions of organic acids, electronic structure, quantum chemical modeling

Abstract

The results of quantum-chemical modeling (Gaussian 09, B3LYP functional) of complex structures that can form from Cu2+ aqua complexes, chloride ions, and anions of organic acids (malonic, succinic, maleic, fumaric, formic, acetic, propionic, butanoic, and acrylic) are considered. It is shown that the series of organic acids under study forms two linear correlation dependences of pK of Cu2+ monosubstituted acidoaquacomplexes on the effective charge of the central atom. One correlation is related to anions of monobasic acids, and the other is related to anions of dibasic acids. Using the parameters of the corresponding pK, z*(Cu2+) dependence and the results of calculation of z*(Cu2+) made it possible to determine the pK value for Cu2+ acrylate complexes, equal to 1.778, information about which is not available in the literature. The degree of change in the effective charge of Cu2+ ions in the [Cu2+(L)] complexes was used to estimate the electron donation power of the ligands: anions of organic acids (−51.95 %) > Cl (−47.75 %) > H2O (−21.45 %). However, in polyligand aquacomplexes, due to the formation of the bidentate hydrate L · H2O, anions of organic acids are inferior to chloride ions. With the introduction of chlorine anions into the inner coordination sphere of the Cu2+ aqua complexes monosubstituted by organic acid anions, a regular weakening of the Cu2+–L bonds is observed. The degree of decrease in Eb(Cu2+–L) depends on the nature of the organic acid. For saturated structures, ΔEb is in the range of 2–8 kJ/mol; for unsaturated structures, it reaches 20 kJ/mol. The energy of the reaction of substitution of water molecules in Cu2+ acidoaquacomplexes by chlorine anions also changes synchronously (from −4 to −30 kJ/mol).

References

Abbas, S. Y., Basyouni, W. M., & El‐Bayouki, K. A. (2018). Synthesis, characterization and antimicrobial activity of 5‐(arylazo) salicylaldimines and their copper (II) complexes. Applied Organometallic Chemistry, 32(2), 1–10. https://doi.org/10.1002/aoc.4032

Didenko, NA, & Ransky, AP (2018). Growth regulatory activity of copper (II) complexes with some thioamides. Bulletin of Vinnytsia Polytechnic Institute, 4, 28–35.

Vargalyuk, V. F., Polonskyy, V. A., Stets, O. S., Stets, N. V., Shchukin, A. I. (2014). Microbiological properties of copper-based dispersion obtained by cathode precipitation in the presence of acrylic acid. Bulletin of Dnipropetrovsk University. Series: Chemistry, 22(2), 47–51. https://doi.org/10.15421/081420

Fedorchuk, A. A., Slyvka, Y. I., Goreshnik, E. A., Kityk, I. V., Czaja, P., & Mys’kiv, M. G. (2018). Crystal structure and NLO properties of the novel tetranuclear copper (I) chloride π-complex with 3-allyl-2-(allylimino)-1, 3-thiazolidin-4-one. Journal of Molecular Structure, 1171, 644–649. https://doi.org/10.1016/j.molstruc.2018.06.017

Slyvka, Y. I., Ardan, B. R., & Mys’kiv, M. G. (2018). Copper (I) chloride π-complexes with 2, 5-bis (allylthio)-1, 3, 4-thiadiazole: synthesis and structural features. Journal of Structural Chemistry, 59(2), 388–394. https://doi.org/10.1134/S0022476618020191

Hordiichuk, R., Slyvka, Y. I., Kinzhybalo, V. V., Goreshnik, E. A., Bednarchuk, T. J., Bednarchuk, O., ... & Mys'kiv, M. G. (2019). Construction of heterometallic and mixed-valence copper (I/II) chloride π-complexes with 1, 2, 4-triazole allyl-derivative. Inorganica Chimica Acta, 495, 119012. https://doi.org/10.1016/j.ica.2019.119012

Jaafar, A., Fix‐Tailler, A., Mansour, N., Allain, M., Shebaby, W. N., Faour, W. H., ... & Ibrahim, G. (2020). Synthesis, characterization, antifungal and antibacterial activities evaluation of copper (II), zinc (II) and cadmium (II) chloride and bromide complexes with new (E)‐1‐(3, 4‐dimethoxybenzylidene)‐4‐methylthiosemicarbazone ligand. Applied Organometallic Chemistry, 34(12), e5988. https://doi.org/10.1002/aoc.5988

Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., ... & Cioslowski, D. J. (2010). Fox Gaussian 09, Revision C. 01. Gaussian Inc.

Cortés-Guzmán, F., & Bader, R. F. (2005). Complementarity of QTAIM and MO theory in the study of bonding in donor–acceptor complexes. Coordination Chemistry Reviews, 249(5–6), 633–662. https://doi.org/10.1016/j.ccr.2004.08.022

Biegler-König, F. B., Schönbohm, J., Bayles, D. (2001). AIM2000-a program to analyze and visualize atoms in molecules. Journal of Computational Chemistry, 22(5), 545–559.

Wachters, A. J. (1970). Gaussian basis set for molecular wavefunctions containing third‐row atoms. The Journal of Chemical Physics, 52(3), 1033–1036. https://doi.org/10.1063/1.1673095

Vargalyuk, V. F., Osokin, Y. S., Polonskyy, V. A., & Glushkov, V. N. (2019). Features of (dπ-pπ)-binding of Cu(I) ions with acrylic, maleic and fumaric acids in aqueous solution. Journal of Chemistry and Technologies, 27(2), 148–157. https://doi.org/10.15421/081916

Vargalyuk, V. F., Osokin, Y. S., Polonskyy, V. A. (2020). Formation of the π-complexes of copper atoms with acrylic, maleic and fumaric acids in aqueous medium. Journal of Chemistry and Technologies, 28(2), 153–116. http://dx.doi.org/10.15421/082016

Vargaljuk, V., Okovytyy, S., Polonskyy, V., Kramska, O., Shchukin, A., & Leszczynski, J. (2017). Copper Crystallization from Aqueous Solution: Initiation and Evolution of the Polynuclear Clusters. Journal of Cluster Science, 28(5), 2517–2528. https://doi.org/10.1007/s10876-017-1239-4

Lee, C., Yang, W., Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical review B, 37(2), 785. https://doi.org/10.1103/PhysRevB.37.785

Barone, V., Cossi, M., Tomasi, J. (1998). Geometry optimization of molecular structures in solution by the polarizable continuum model. Journal of Computational Chemistry, 19(4), 404–417. https://doi.org/10.1002/(SICI)1096-987X(199803)19:4<404::AID-JCC3>3.0.CO;2-W

Tomasi, J., Mennucci, B., Cammi, R. (2005). Quantum mechanical continuum solvation models. Chemicalreviews, 105(8), 2999–3094. https://doi.org/10.1021/cr9904009

Espinosa, E., Molins, E., Lecomte, C. (1998). Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chemical Physics Letters, 285(3/4), 170–173. https://doi.org/10.1016/S0009-2614(98)00036-0

Mirzaeva, I. V., Kozlova, S. G., & Krisyuk, V. V. (2021). Quantum Chemical Study of the stability of Copper-Palladium complexes in the gas phase. Journal of Structural Chemistry, 62(1), 9–18. https://doi.org/10.1134/S0022476621010029

Faraji, S., Wang, B., Valencia, H. O., & Frapper, G. (2021). Computational discovery of two-dimensional copper chalcogenides CuX (X = S, Se, Te). Physical Review Materials, 5(12), 124007.

Zhang, Y. Y., Wang, M. J., Chang, C. R., Xu, K. Z., Ma, H. X., & Zhao, F. Q. (2018). A DFT study on the enthalpies of thermite reactions and enthalpies of formation of metal composite oxide. Chemical Physics, 507, 19–27. https://doi.org/10.1016/j.chemphys.2018.04.004

Ying, L. I., Niu, S. L., Wang, Y. Z., Han, K. H., Zhou, W. B., & Jun, W. A. N. G. (2021). Mechanism of N2O reduction by biomass gasification gas reburning. Journal of Fuel Chemistry and Technology, 49(10), 1435–1443. https://doi.org/10.1016/S1872-5813(21)60092-0

Vargalyuk, V. F., Borschevich, A. O., Borschevich, L. V., & Serediuk, V. A. (2017). Quantum-chemical analysis of formation reactions of Со2+ complexes. Bulletin of Dnipropetrovsk University. Series Chemistry, 25(1), 15–20. https://doi.org/10.15421/081703

Hume, D. N. (1979). Stability constants of metal-ion complexes. Part B: Organic ligands,(IUPAC chemical data series-no. 22): DD Perrin, Pergamon Press, Oxford/New York, 1979, 1263.

Bunting, J. W., & Thong, K. M. (1970). Stability constants for some 1 : 1 metal–carboxylate complexes. Canadian Journal of Chemistry, 48(11), 1654–1656. https://doi.org/10.1139/v70-273

Arena, G., Cali, R., Cucinotta, V., Grasso, M., Musumeci, S., Rizzarelli, E., ... & Siracusa, G. (1980). Formation and stability of mixed complexes of copper (II) ion ando-phenylenediamine with some mono-, bi-, and tridentate ligands in aqueous solution. Transition Metal Chemistry, 5(1), 30–35. https://doi.org/10.1007/BF01396862

Orlova, T. D., Katrovtseva, A. V., Bychkova, S. A., & Fam, T. L. (2011). The thermodynamic characteristics of formation of Copper(II) ion complexes with carboxylic acids in aqueous solutions. Journal of Physical Chemistry, 85(2), 275–279. https://doi.org/10.1134/S0036024411020269

Morimoto, J. Y., & DeGraff, B. A. (1975). Photochemistry of copper complexes. Copper (II) malonate system. The Journal of Physical Chemistry, 79(4), 326–331. https://doi.org/10.1021/j100571a008

Bychkova, S., Vatrovtseva, K., Kozlovsky, E., Tukumova, N., & Sharnin, V. (2005). Study of the complexing properties of dicarboxylic acids with copper(II) ions. In Chugaev Conference on Coordination Chemistry, 95.

Gregor, H. P., Luttinger, L. B., & Loebl, E. M. (1955). Metal–polyelectrolyte complexes. I. The polyacrylic acid–copper complex. The Journal of Physical Chemistry, 59(1), 34–39. https://doi.org/10.1021/j150523a011

Oliynyk, L., Oksana, M., Bernatska, N., & Komarenska, Z. (2021). Investigation the Process Interaction of the Copper Ions (II) with Polyacryl Acid. Petroleum & Coal, 63(4), 946–952.

Published

2022-04-27

Issue

Section

Physical and inorganic chemistry