ISOLATION AND RESEARCH OF MOLECULAR MASS AND COMPOSITION OF LYSOCYM ARMORACIA RUSTICANA BY THE ENZYME-SUBSTRATE CHROMATOGRAPHY METHOD

Authors

  • Galyna V. Krusir Odessa National Academy of Food Technologies, Ukraine
  • Konstantyn O. Prysiazniuk Odessa Polytechnic National University, Ukraine
  • Elena V. Sevastyanova Odessa National Academy of Food Technologies, Ukraine
  • Liudmyla N. Pylypenko Odessa National Academy of Food Technologies, Ukraine
  • Olga A. Sagdeeva Одеська національна академія харчових технологій, Ukraine

DOI:

https://doi.org/10.15421/jchemtech.v30i1.255480

Keywords:

lysozyme, isolation, Armoracia rusticana root crops, enzyme-substrate chromatography, gel electrophoresis

Abstract

The article presents the results of the extraction of plant lysozyme from Armoracia rusticana by specific enzyme-substrate chromatography. A chromatographic curve of lysozyme isolation from the juice part of Armoracia rusticana root crops using as a biospecific sorbent, glucochitin, which is presented.  A preparation of lysozyme was obtained from the juice part of the roots of Armoracia rusticana with a specific activity of 217.6 units/mg. The lysozyme, which was examined by gel electrophoresis in 15 % polyacrylamide gel using a calibration curve is characterized by a molecular mass of 12.022 kDa, that confirms that it belongs to low-molecular-weight proteins. The yield of the lysozyme preparation by the total lysozyme activity is 36.8 %. The data obtained allow predicting the prospects of using Armoracia rusticana as a source of plant-based lysozyme.

References

Barbosa, O., Ortiz, C., Berenguer-Murcia, Á., Torres, R., Rodrigues, R.C., Fernandez-Lafuente, R. (2015). Strategies for the one-step immobilization-purification of enzymes as industrial biocatalysts. Biotechnol Adv., 33(5):435–56. doi: 10.1016/j.biotechadv.2015.03.006.

Novykova, L. A., Faletrov, Ya. V., Kovaleva, Y. E., Mauersberger, Sh., Luzykov, V. N., Shkumatov, V. M. (2009). From the structure and function of steroid biosynthesis enzymes to new genetic engineering technologies. Uspexy byologycheskoj xymyy, 49, 159–210.

Schomburg, I., Chang, A., Placzek, S., Söhngen, C., Rother, M., Lang, M., Munaretto, C., Ulas, S., Stelzer, M., Grote, A., Scheer, M., Schomburg, D. (2013). BRENDA in 2013: integrated reactions, kinetic data, enzyme function data, improved disease classification: new options and contents in BRENDA, Nucleic Acids Research, 41(D1), D764–D772.

https://doi.org/10.1093/nar/gks1049.

Qiao J., Zhang M., Qi L. (2018). Dual-functional polymer-modified magnetic nanoparticles for isolation of lysozyme. Analytica Chimica Acta, 1035, 70-76.

Cornish-Bowden, A. (2013). The origins of enzyme kinetics, FEBS letters, 587(17), 2725–2730. https://doi.org/10.1016/j.febslet.2013.06.009

Goncharova, A.Y., Okulych, V. K., Zemko, V. Yu., Senkovych, S. A. (2019). Antimicrobial activity of lysozyme as a factor nonspecific resistance. Vestnik VSMU, 18(4), 40–45. https://doi.org/10.22263/2312-4156.2019.4.4

Krusir, G., Zakharchuk, V., Sevastyanova, E., Pylypenko, L., Mazurenko, K. (2021). Isolation of lysozyme of Black sea mussel Mytilus galloprovincialis. Journal of Chemistry and Technologies, 29(3), 410-416.

Dekina, S. S. (2020). Biotexnologiya mukoadgezyvnyx lizocym-polimernyx system medychnogo pryznachennya, National Academy of Sciences of Ukraine, Kyiv.

Pesenceva, M.S. (2013). Enzymes of the marine mollusk Littorina sitkana: 1→3-β-D-glucanase, β-D-glucosidase, sulfatase and tyrosyl protein sulfotransferase, Pacific Institute of Bioorganic Chemistry, Vladivostok.

Fox, P. F., McSweeney, P. L. H., Timothy, M. Cogan М., Guinee, T. P. (2004). Cheese Chemistry, Physics and Microbiology. Volume 1 ISBN 0–1226–3652-X Copyright © 2004, Elsevier Ltd.

Savyelyeva, N. M. (2017). Features of the clinic, diagnosis, treatment and prevention of generalized periodontitis in patients with parasitic invasion, DU "ISShhLX NAMN".

Dekina, S. S. (2020). [Biotechnology of mucoadhesive lysozyme-polymer systems for medical applications] (2020). dys. …d-ra biol.nauk. (in Ukrainian).

Bachali, S., Bailly, X., Jolles, J., Jolles, P., Deutsch, J. S. (2004). The lysozyme of the starfish Asteria rubens. A paradigmatic type i lysozyme. Eur. J. Biochem., 271, 237–242.

Rymareva, L.V., Serbyna, E.M., Sokolova, E.N., Borshheva, Yu.A. (2017). Enzyme preparations and biocatalytic processes in the food industry. Voprosy pytanyya, 86(5), 62–74. doi: 10.24411/0042-8833-2017-00078

Xue Q., Hellberg M.E., Schey K.L., Itoh N., Eytan R.I., Cooper R.K., La Peyre J.F. (2010). A new lysozyme from the eastern oyster, Crassostrea virginica, and a possible evolutionary pathway for i-type lysozymes in bivalves from host defense to digestion. BMC evolutionary biology, 15(10), 213. doi: 10.1186/1471-2148-10-213.

Danylova, O., Serdyuk, M., Pylypenko, L., Pelykh, V., Lopotan, I., Yegorova, A. (2019). Screening of Agricultural Raw Materials and Long-term Storage Products to Identify Bacillary Contaminants. Modern Development Paths of Agricultural Production. SpringerLink, 641–654. https://doi.org/10.1007/978-3-030-14918-5_63

Ovsepyan, A. M., Dekyna, S. S. (2016). Development of a method for isolating highly purified lysozyme from chicken egg protein. Scientific youth conference "Problems and reach of modern chemistry", 71.

Dekina, S. S., Romanovskа, I. I., Ovsepyan, A. M., Bodyul, M. G., Toptikov, V.A. (2015). Isolation and purification of lysozyme from the hen egg white. Biotechnologia Acta, 8(6), 41–47.

Dekina, S. S., Romanowska, I. I., Leonenko, I. I., Egorova, A. V. (2015). [Mucoadhesive gel with imbiblized lysozyme: preparation, properties], Biotechnologia Acta, 8(3), 104–109. (in Ukrainian).

Natarova, N. O. (2001). Biologically active additives to fat. ID «Vis».

Reshta, S. P., Pylypenko, L. M., Danylova, O. I. (2021). Physiological aspects of assessing the quality of grub products. OLDI-PLYuS.

Freitag, R., Hilbrig F. (2003). Protein purification by affinity precipitation. Journal of chromatography B., 790(1–2), 79–90.

Affinity Chromatography Principles and Methods Handbook. (2007). GE Healthcare Bio-Sciences AB. 18-1022-29 AE 10/2007

Skryabyna, K.G., Vyxorevoj, G.A., Varlamova, V.P. (2002). Chitin and chitosan: obtaining, properties and application. Nauka.

Romanovskaya, I., Dekina, S., Andronati, S. (2012). [Construction of immobilized protein substances]. Saarbrücken: LAP Lambert Academic Publishing GmbН & Co. KG. (in Russian).

Kapustian A., Cherno N. (2019). Determination of complex forming ability of mixed-ligand organic systems relative to the metal ions. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series: Food Technologies 21 (91), 130-135. https://doi.org/10.32718/nvlvet-f9122.

Ylyna, A. V., Varlamov, V. P. (2003). Influence of the degree of acetylation on the enzymatic hydrolysis of chitosan by celloviridin G20х. Prykladnaya byoxymyya y mykrobyologyya, 3, 273–277.

Khandagle, A. (2017). Lowry method for protein estimation (Estimation of protein concentration in laboratory) https://www.slideshare.net/AbhayKhandagle/lowry-method-for-protein-estimation

Published

2022-05-13