• Oleksandr S. Ivashchuk Lviv Polytechnic National University, Ukraine
  • Volodymyr M. Atamanyuk Lviv Polytechnic National University, Ukraine
  • Roman A. Chyzhovych Lviv Polytechnic National University, Ukraine
  • Sofiia S. Kiiaieva Lviv Polytechnic National University, Ukraine
  • Vasyl P. Duleba Lviv Polytechnic National University, Ukraine
  • Iryna B. Sobechko Lviv Polytechnic National University, Ukraine



brewer’s spent grain, secondary raw materials, briquettes, solid fuel


The article describes the results of experimental studies of the use of barley brewer’s spent grain (BSG) for the production of alternative solid fuels. A method of obtaining briquettes by pressing is described. The calorific values of the raw material and the obtained samples were defined. According to the research results, it is determined that the value of the highest calorific value of dried brewer’s spent grain is 20005 kJ/kg, and created solid fuel samples – briquettes– in the range from 20173 to 20298 kJ/kg. The residual moisture content of the dried brewer’s spent grain was ~ 6.5% wt., the ash content of the dried brewer’s spent grain was in the range of 1.6÷2.3% wt. The residual moisture content of the briquettes was in the range of 0.5÷1.5% wt., and the ash content was in the range of 1.5÷1.6% wt. The obtained alternative solid fuel, which contains barley brewer’s spent grain, has a high calorific value, does not contain harmful impurities, does not require additional cleaning, does not require auxiliaries to form a solid form, provides additional disposal of industrial beer industry wastes, increases environmental friendliness by replacing traditional fuel resources and the absence of large amounts of harmful emissions. Created samples do not require binders and pre-cleaning before production.


Santos, M., Jiménez, J. J., Bartolomé, B., Gómez-Cordovés, C., del Nozal, M. О. (2003). Variability of brewer’s spent grain within a brewery. Food Chem., 80(1), 17–21.

Hassan, S. S., Ravindran, R., Jaiswal, S., Tiwari, B. K., Williams, G. A., Jaiswal, A. K. (2020). An evaluation of sonication pretreatment for enhancing saccharification of brewers' spent grain. Waste Manage., 105, 240–247.

Mussatto, S. I., Dragone, G., Roberto, I. C. (2006). Brewers' spent grain: generation, characteristics and potential applications. J. Cereal Sci., 43(1), 1–14.

Mussatto, S. I. (2014). Brewer's spent grain: a valuable feedstock for industrial applications. J. Sci. Food Agric., 94(7), 1264–1275.

Aboukila, E. F., Nassar, I. N., Rashad, M., Hafez, M., Norton, J. B. (2013). Reclamation of calcareous soil and improvement of squash growth using brewers’ spent grain and compost. J. Saudi Soc. Agric. Sci., 17(4), 390–397.

Eliopoulos, C., Arapoglou, D., Chorianopoulos, N., Markou, G., Haroutounian, S. (2022). Conversion of brewers’ spent grain into proteinaceous animal feed using solid state fermentation. Environ. Sci. Pollut. Res., 29, 29562–29569.

Ikram, S., Huang, L., Zhang, H., Wang, J., Yin., M. (2017). Composition and Nutrient Value Proposition of Brewers Spent Grain. J. Food Sci., 82(10), 2232–2242.

Bianco, A., Budroni, M., Zara, S., Mannazzu, I., Fancello, F., Zara, G. (2020). The role of microorganisms on biotransformation of brewers’ spent grain. Appl. Microbiol. Biotechnol., 104, 8661–8678.

Naibaho, J., Korzeniowska, M. (2021). Brewers’ spent grain in food systems: Processing and final products quality as a function of fiber modification treatment. J. Food Sci., 86(5), 1532–1551.

Combest, S., Warren., C. (2018). Perceptions of college students in consuming whole grain foods made with Brewers’ Spent Grain. Food Science & Nutrition, 7(1), 225–237.

Ktenioudaki, A., Chaurin, V., Reis, S., Gallagher, E. (2012). Brewer’s spent grain as a functional ingredient for breadsticks. Int. J. Food Sci. Technol., 47(8), 1765–1771.

Öztürk, S., Özboy, Ö., Cavidoğlu, I., Köksel, H. (2002). Effects of Brewer's Spent Grain on the Quality and Dietary Fibre Content of Cookies. J. Inst. Brew., 108(1), 23–27.

Ivashchuk, O. S., Atamanyuk, V. M., Gnativ, Z. Ya., Chyzhovych, R. A., Zherebetskyi, R. R. (2021). Research into kinetics of filtration drying of alcohol distillery stillage. Vopr. Khim. Khim. Tekhnol., 4, 58–65.

Hosovskyi, R., Kindzera, D., Atamanyuk, V. (2016). Diffusive mass transfer during drying of grinded sunflower stalks. Chem. Chem. Technol., 10(4), 460-463.

Gnativ, Z. Ya., Ivashchuk, O. S., Hrynchuk, Yu. M., Reutskyi, V. V., Koval, I. Z., Vashkurak, Yu. Z. (2020). Modeling of internal diffusion mass transfer during filtration drying of capillary-porous material. Mathematical Modeling and Computing, 7(1), 22-28.

Atamanyuk, V., Gnativ, Z., Kinzera, D., Janabayev, D., Khusanov, A., Kaldybaeva, B. (2020). Hydrodynamics of cotton filtration drying. Chem. Chem. Technol., 14(3), 426-432.

Kobeyeva, Z., Khussanov, A., Atamanyuk, V., Hnativ, Z., Kaldybayeva, B., Janabayev, D., Gnylianska, L. (2022). Analyzing the kinetics in the filtration drying of crushed cotton stalks. East.-Eur. J. Enterp. Technol., 1(8-115), 55-66.

Ivashchuk, O. S., Atamanyuk, V. M., Chyzhovych, R. A., Kiiaieva, S. S., Zherebetskyi, R. R., Sobechko, I. B. (2022) Preparation of an alternate solid fuel from alcohol distillery stillage. Vopr. Khim. Khim. Tekhnol., 1, 54–59.

Fusi, A., Bacenetti, J., Proto, A., Tedesco, D., Pessina, D., Facchinetti, D. (2021). Pellet Production from Miscanthus: Energy and Environmental Assessment. Energies, 14(1), 73.

Khivrych, O. B., Kvak, V. M., Kas’kiv, V. V., Mamajsur, V. V., Makarenko, A. S. (2011). Energetychni roslyny yak alternatyva tradycijnym vydam palyva. Agrobiologiya, 6, 153-156.

Ivashchuk, O. S., Atamanyuk, V. M., Chyzhovych, R. A., Kuzminchuk, T. A., Zherebetskyi, R. R., Kiiaieva, S. S. (2021). Research of the calorific value of dried alcohol distillery stillage, Chemical Technology and Engineering, 200–201.

Chaloupkova, V., Ivanova, T., Ekrt, O., Kabutey, A., Herak, D. (2018). Determination of particle size and distribution through image-based macroscopic analysis of the structure of biomass briquettes. Energies, 11(2), 331.

Manziy, S., Kopanskiy, M., Ferenc, O. (2010). Porivnjaljni kharakterystyky ghranuljovanogho ta bryketovanogho biopalyva. Naukovyi Visnyk Natsiohalnoho Lisotekhnichnoho Universytetu Ukrainy, 20(3), 88–90 (in Ukrainian).

Malovanyi, M., Bat’, R. (2011). Ghranuljuvannja palyvnykh materialiv. East.-Eur. J. Enterp. Technol., 3/8(51), 8–12 (in Ukrainian).

García-Maraver, A., Popov, V., Zamorano, M. (2011). A review of European standards for pellet quality. Renewable Energy, 36(12), 3537–3540.