REMOVAL OF SULFATES FROM AQUEOUS SOLUTION BY USING RED MUD

Authors

  • Inna M. Trus National Technical University of Ukraine ''Kiyv Polytechnic Institute'', Peremogy 37, Kiev, 03056, Ukraine http://orcid.org/0000-0001-6368-6933
  • Yana P. Kryzhanovska National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Ukraine https://orcid.org/0000-0002-9747-969X
  • Mukola D. Gomelya National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Ukraine

DOI:

https://doi.org/10.15421/jchemtech.v30i3.256912

Keywords:

red slime, sulfates extraction, lime, reagent softening, sorption capacity

Abstract

The processes of reagent purification of aqueous solutions from sulfates when using the red slime of the Mykolayiv Alumina Plant were investigated in this work. According to chemical analysis, this slime contains a sufficient amount of alumina (up to 18 %) and calcium oxide (up to 10 %) and along with calcium silicate and iron oxides contains sodium and calcium aluminate. The ability of sodium aluminate to precipitate from a solution of sulfates in the form of calcium sulfoaluminate was used in the work to purify water from sulfate anions. The process takes place when treating the solution with sludge and lime suspension. The extraction of sulfates was achieved at the level of 64-75%. The dependence of the efficiency of sulfates extraction on their initial concentration is determined. It is shown that at the initial concentration of sulfates of 20 mg-eq/dm3 at a lime consumption of 2–10 mg-eq/dm3 at a sludge consumption of 1 g/dm3 the residual concentration of sulfates decreases to 7.8–9.1 mg-eq/dm3. At a sulfate concentration of 40 mg-eq/dm3, the concentration of sulfates decreases to 10.8–21.2 mg-eq/dm3 at a lime consumption of 30 mg-eq/dm3, regardless of the sludge consumption.

Author Biography

Inna M. Trus, National Technical University of Ukraine ''Kiyv Polytechnic Institute'', Peremogy 37, Kiev, 03056

Docent of the Department of ecology and technology of plant polymers

References

Mitchenko, T., Kosogina, I., Kyrii, S. (2019). The local solutions for water security in Ukraine. Physical and Cyber Safety in Critical Water Infrastructure, 99–105.

Skousen, J. G., Ziemkiewicz, P. F., McDonald, L. M. (2019). Acid mine drainage formation, control and treatment: Approaches and strategies. Extractive Industries and Society, 6(1), 241–249. https://doi.org/10.1016/j.exis.2018.09.008

Tong, L., Fan, R., Yang, S., Li, C. (2021). Development and status of the treatment technology for acid mine drainage. Mining, Metallurgy and Exploration, 38, 315–327. https://doi.org/10.1007/s42461-020-00298-3

Remeshevska, I., Trokhymenko, G., Gurets, N., Stepova, O., Trus, I., Akhmedova, V. (2021). Study of the Ways and Methods of Searching Water Leaks in Water Supply Networks of the Settlements of Ukraine. Ecol. Eng. Environ. Technol., 22(4), 14–21. doi: https://doi.org/10.12912/27197050/137874

Naidu, G., Ryu, S., Thiruvenkatachari, R., Choi, Y., Jeong, S., Vigneswaran, S. (2019). A critical review on remediation, reuse, and resource recovery from acid mine drainage. Environmental Pollution, 247, 1110–1124. https://doi.org/10.1016/j.envpol.2019.01.085

Haan, T. Y., Shah, M., Chun, H. K., Mohammad, A. W. (2018). A study on membrane technology for surface water treatment: Synthesis, characterization and performance test. Membrane Water Treatment, 9(2), 69–77. https://doi.org/10.12989/mwt.2018.9.2.069

Trus, I., Radovenchyk, I., Halysh, V., Skiba, M., Vasylenko, I., Vorobyova, V., Hlushko, O., Sirenko, L. (2019). Innovative Approach in Creation of Integrated Technology of Desalination of Mineralized Water. Journal of Ecological Engineering, 20(8), 107–113. https://doi.org/10.12911/22998993/110767

Trus, І., Gomelya, N., Halysh, V., Radovenchyk, I., Stepova, O., Levytska, O. (2020). Technology of the comprehensive desalination of wastewater from mines. East.-Eur. J. Enterp. Technol., 3/6(105), 21–27. https://doi.org/10.15587/1729-4061.2020.206443

Öztürk, Y. Ekmekçi, Z. (2020). Removal of sulfate ions from process water by ion exchange resins. Miner. Eng., 159, 106613.

https://doi.org/10.1016/j.mineng.2020.106613

Trus I. (2022). Optimal conditions of ion exchange separation of anions in low-waste technologies of water desalination. Journal of Chemical Technology and Metallurgy, 57(3), 550–558.

Trus, I., Gomelya, M., Skiba, M., Vorobyova, V. (2021). Preliminary studies on the promising method of ion exchange separation of anions. Archives of Environmental Protection, 47, 4, 93-97. doi: 10.24425/aep.2021.139505

González-Cárdenas, B., Carreño-Aguilera, G., Puy-Alquiza, M. J., Miranda-Avilés, R., Jacobo-Azuara, A. (2019). Sulfate ions removal from an abandoned mine water using electrocoagulation. characterization of the flocs originated through chemical and morphological analysis. Int. J. Electrochem. Sci., 14, 6500-6512. https://doi.org/10.20964/2019.07.60

Sandoval, M. A., Nava, J. L., Coreño, O., Carreño, G., Arias, L. A., & Méndez, D. (2017). Sulfate ions removal from an aqueous solution modeled on an abandoned mine by electrocoagulation process with recirculation. Int. J. Electrochem. Sci., 12(2), 1318–1330. https://doi.org/10.20964/2017.02.08

Mamelkina, M. A., Cotillas, S., Lacasa, E., Sáez, C., Tuunila, R., Sillanpää, M., Rodrigo, M. A. (2017). Removal of sulfate from mining waters by electrocoagulation. Sep. Purif. Technol., 182, 87–93. https://doi.org/10.1016/j.seppur.2017.03.044

Trus I., Gomelya M. (2021). Effectiveness nanofiltration during water purification from heavy metal ions. Journal of Chemical Technology and Metallurgy, 56(3), 615–620. https://dl.uctm.edu/journal/node/j2021-3/21_20-03p615-620.pdf

Trus, I., Gomelya, M., Skiba, M., Vorobyova, V. (2021). Effectiveness of complexation-nanofiltration during water purification from copper ions. Journal of Chemical Technology and Metallurgy, 56(5), 1008–1015. https://dl.uctm.edu/journal/node/j2021-5/16_20-65_p_1008-1015.pdf

Liu, D., Edraki, M., Malekizadeh, A., Schenk, P. M., & Berry, L. (2019). Introducing the hydrate gel membrane technology for filtration of mine tailings. Miner. Eng., 135, 1–8.

https://doi.org/10.1016/j.mineng.2019.02.030

Trus, I. M., Gomelya, M. D., Makarenko, I. M., Khomenko, A. S., Trokhymenko, G. G. (2020). The Study of the particular aspects of water purification from heavy metal ions using the method of nanofiltration. Naukovyi Visnyk Natsionalnogo Hirnychogo Universytetu, 4, 117–123.

https://doi.org/10.33271/nvngu/2020-4/117

Kinnunen, P., Kyllönen, H., Kaartinen, T., Mäkinen, J., Heikkinen, J., Miettinen, V. (2017). Sulphate removal from mine water with chemical, biological and membrane technologies. Water Sci. Technol., 2017(1), 194–205. https://doi.org/10.2166/wst.2018.102

Trokhymenko, G., Magas, N., Gomelya, N., Trus, I., Koliehova, A. (2020). Study of the Process of Electro Evolution of Copper Ions from Waste Regeneration Solutions. Journal of Ecological Engineering, 21(2), 29–38. https://doi.org/10.12911/22998993/116351

Zhao, C., Zhou, J., Yan, Y., Yang, L., Xing, G., Li, H., Zheng, H. (2021). Application of coagulation/flocculation in oily wastewater treatment: A review. science of the total environment, 765, 142795. https://doi.org/10.1016/j.scitotenv.2020.142795

Bouchareb, R., Derbal, K., Özay, Y., Bilici, Z., & Dizge, N. (2020). Combined natural/chemical coagulation and membrane filtration for wood processing wastewater treatment. Journal of Water Process Engineering, 37, 101521. https://doi.org/10.1016/j.jwpe.2020.101521

Zhu, M., Yin, X., Chen, W., Yi, Z., Tian, H. (2019). Removal of sulfate from mine waters by electrocoagulation/rice straw activated carbon adsorption coupling in a batch system: Optimization of process via response surface methodology. J. Water Reuse Desalin., 9(2), 163–172.

https://doi.org/10.2166/wrd.2018.054

Tolonen, E., Rämö, J., Lassi, U. (2015). The effect of magnesium on partial sulfate removal from mine water as gypsum. J. Environ. Manage., 159, 143–146. https://doi.org/10.1016/j.jenvman.2015.05.009

Ostovar, M., Amiri, M. (2013). A novel eco-friendly technique for efficient control of lime water softening process Water Environ. Res., 85(12), 2285–2293. https://doi.org/10.2175/106143013X13807328848333

Trus I. M., Gomelya M. D. (2021). Desalination of mineralized waters using reagent methods. Journal of Chemistry and Technologies, 29(3), 417–424. https://doi.org/10.15421/jchemtech.v29i3.214939

Silva, R., Cadorin, L., & Rubio, J. (2010). Sulphate ions removal from an aqueous solution: I. Co-precipitation with hydrolysed aluminum-bearing salts. Minerals Engineering, 23(15), 1220–1226.

https://doi.org/10.1016/j.mineng.2010.08.016

Trus, I. M., Fleisher, H. Y., Tokarchuk, V. V., Gomelya, M. D., Vorobyova, V. I. (2017). Utilization of the residues obtained during the process of purification of mineral mine water as a component of binding materials. Vopr. Khim. Khim. Tekhnol., 6, 104–109.

Hua, Y., Heal, K. V., Friesl-Hanl, W. (2017). The use of red mud as an immobiliser for metal/metalloid-contaminated soil: A review. Journal of Hazardous Materials, 325, 17–30.

https://doi.org/10.1016/j.jhazmat.2016.11.073

Wang, M., Liu, X. (2021). Applications of red mud as an environmental remediation material: A review. Journal of Hazardous Materials, 408, 124420. https://doi.org/10.1016/j.jhazmat.2020.124420

Li, H., Liu, Y., Zhou, Y., Zhang, J., Mao, Q., Yang, Y., Huang, H., Liu, Z., Peng, Q., Luo, L. (2018). Effects of red mud based passivator on the transformation of Cd fraction in acidic Cd-polluted paddy soil and Cd absorption in rice. Sci. Total Environ., 640, 736–745. https://doi.org/10.1016/j.scitotenv.2018.05.327

Qi, X., Wang, H., Zhang, L., Xu, B., Shi, Q., Li, F. (2020). Removal of Cr (III) from aqueous solution by using bauxite residue (red mud): identification of active components and column tests. Chemosphere, 245, 125560. https://doi.org/10.1016/j.chemosphere.2019.125560

Kazak, O., Tor, A. (2020). In situ preparation of magnetic hydrochar by co-hydrothermal treatment of waste vinasse with red mud and its adsorption property for Pb(II) in aqueous solution. J. Hazard. Mater., 393, 122391.

https://doi.org/10.1016/j.jhazmat.2020.122391

Du, Y., Dai, M., Cao, J., Peng, C. (2019). Fabrication of a low-cost adsorbent supported zero-valent iron by using red mud for removing Pb (II) and Cr (VI) from aqueous solutions. RSC Adv., 9(57), 33486–33496. doi: 10.1039/C9RA06978J

Pietrelli, L., Ippolito, N. M., Ferro, S., Dovì, V. G., Vocciante, M. (2019). Removal of Mn and As from drinking water by red mud and pyrolusite. Journal of Environmental Management, 237, 526–533. https://doi.org/10.1016/j.jenvman.2019.02.093

Cengeloglu, Y., Tor, A., Arslan, G., Ersoz, M., Gezgin, S. (2007). Removal of boron from aqueous solution by using neutralized red mud. J. Hazard. Mater., 142(1–2), 412–417. https://doi.org/10.1016/j.jhazmat.2006.08.037

Cengeloglu, Y., Tor, , A., Ersoz, M., Arslan, G. (2006). Removal of nitrate from aqueous solution by using red mud. Sep. Purif. Technol., 51(3), 374–378. https://doi.org/10.1016/j.seppur.2006.02.020

Li, L., Zhu, Q., Man, K., Xing, Z. (2017). Fluoride removal from liquid phase by Fe-Al-La trimetal hydroxides adsorbent prepared by iron and aluminum leaching from red mud. J. Mol. Liq., 237, 164–172. https://doi.org/10.1016/j.molliq.2017.04.097

Chen, M., Ding, S., Chen, X., Sun, Q., Fan, X., Lin, J., Ren, M., Yang, L., Zhang, C. (2018). Mechanisms driving phosphorus release during algal blooms based on hourly changes in iron and phosphorus concentrations in sediments. Water Res., 133, 153–164. https://doi.org/10.1016/j.watres.2018.01.040

Kyrii, S., Dontsova, T., Kosogina, I., Klymenko, N., Nechyporuk, D. (2020). Local wastewater treatment by effective coagulants based on wastes. Journal of Ecological Engineering, 21(5), 34–41. DOI: 10.12911/22998993/122184

Shi, W., Ren, H., Huang, X., Li, M., Tang, Y., Guo, F. (2020). Low cost red mud modified graphitic carbon nitride for the removal of organic pollutants in wastewater by the synergistic effect of adsorption and photocatalysis. Sep. Purif. Technol., 237, 116477. https://doi.org/10.1016/j.seppur.2019.116477

Shim, W.G., Nah, J.W., Jung, H.Y., Park, Y.K., Jung, S.C., Kim, S.C. (2018). Recycling of red mud as a catalyst for complete oxidation of benzene. J. Ind. Eng. Chem., 60, 259–267. https://doi.org/10.1016/j.jiec.2017.11.012

Matthaiou, V., Frontistis, Z., Petala, A., Solakidou, M., Deligiannakis, Y., Angelopoulos, G.N., Mantzavinos, D. (2018). Utilization of raw red mud as a source of iron activating the persulfate oxidation of paraben. Process Saf. Environ. Prot., 119, 311–319. https://doi.org/10.1016/j.psep.2018.08.020

Feng, Y., Wu, D., Liao, C., Deng, Y., Zhang, T., Shih, K. (2016). Red mud powders as low-cost and efficient catalysts for persulfate activation: pathways and reusability of mineralizing sulfadiazine. Sep. Purif. Technol., 167, 136–145.

https://doi.org/10.1016/j.seppur.2016.04.051

Gubina, V. G., & Kadoshnikov, V. M. (2005). Chervony`j shlam My`kolayivs`kogo gly`nozemnogo zavodu–cinna texnogenna sy`rovy`na. Geologo-mineralogichny`j visny`k, 2, 122–126.

Naby`vanecz`, B. J. Anality`chna ximiya pry`rodnogo seredovy`shha / B. J. Naby`vanecz`, V. V. Suxan, L. V. Kalabina – K.: Ly`bid`, 1996. – 201 s.

Trus, I., Gomelya, M., Tverdokhlib, M., Halysh, V., Radovenchyk, I., Benatov, D. (2022). Purification of Mine Waters Using Lime and Aluminum Hydroxochloride. Ecol. Eng. Environ. Technol., 5, 169–176.doi: https://doi.org/10.12912/27197050/152104

Downloads

Published

2022-10-31