WASTE-FREE TECHNOLOGY OF PROCESSING WILD PLANT RAW MATERIALS

Authors

DOI:

https://doi.org/10.15421/jchemtech.v30i3.256924

Keywords:

waste-free technology; osmotic dehydration; drying; wild plant raw materials; powders; derivatives of berry processing products

Abstract

The article proposes waste-free technology of processing wild plant raw materials of Hippophae rhamnoides., Viburnum opulus, Sambucus nigra into powders. Methods. To determine the physicochemical parameters, standard research methods were used. The mass fraction of moisture was determined by drying to constant weight. The mass fraction of total sugar was determined by the permanganate method. Identification of the amino acid spectrum was carried out by ion-exchange column chromatography using the BIOTRONIK amino acid analyzer.Results. Moisture removal mode, which involves pre-dehydration for 1 hour by osmotic dehydration and subsequent drying in infrared dryers can reduce the process duration. The dried materials have final humidity, which allows grinding the dried material into powders ≤0.45 mm. Besides the reduction of the drying period, osmotic dehydration preserves the taste and aromatic properties of derivatives of processed wild berries and their natural color, which makes it possible to use powders as natural food additives in various sectors of the food industry. The proposed mode of heat treatment allows reducing energy consumption for the process and reducing the drying time to 2-2.5 hours. Conclusions. Analysis of the amino acid composition of powders made from derivatives of wild berries showed that they have high biological value and can be used to make functional food products.

References

Boris, V. Nemzer, Diganta, Kalita, Alexander, Yashin, Y., & Yakov, I. Yashin (2020). Bioactive Compounds, Antioxidant Activities, and Health Beneficial Effects of Selected Commercial Berry Fruits: A Review. Journal of Food Research, 9(5), 78–101. https://doi.org/10.5539/jfr.v9n5p78.

Zielińska, A., Nowak, I. (2017). Abundance of active ingredients in sea-buckthorn oil. Lipids Health Dis 16, 95. https://doi.org/10.1186/s12944-017-0469-7.

Bal, L. M., Meda, V., Naik, S.N., Satya, S. (2011). Sea buckthorn berries: A potential source of valuable nutrients for nutraceuticals and cosmoceuticals. Food Research International, 44, 1718–1727. doi:10.1016/j.foodres.2011.03.002.

Ferreira, S. S., Silva, A. M., Nunes, F. M. (2020). Sambucus nigra L. Fruits and Flowers: Chemical Composition and Related Bioactivities. Food Reviews International, 1237–1265.https://doi.org/10.1080/87559129.2020.1788578 .

Domínguez, R., Zhang, L., Rocchetti, G., Lucini, L., Pateiro, M., Eduardo P., Munekata, J., Lorenzo, M. (2020). Elderberry (Sambucus nigra L.) as potential source of antioxidants. Characterization, optimization of extraction parameters and bioactive properties. Food Chemistry, 330, 127266.

https://doi.org/10.1016/j.foodchem.2020.127266.

Krüger, S., Mirgos, M., & Morlock, G.E. (2015). Effect-directed analysis of fresh and dried elderberry (Sambucus nigra L.) via hyphenated planar chromatography. Journal of Chromatography A, 1426, 209−219. https://doi.org/10.1016/j.chroma.2015.11.021.

Veberic, R., Jakopic, J., Stampar, F., & Schmitzer, V. (2009). European elderberry (Sambucus nigra L.) rich in sugars, organic acids, anthocyanins, and selected polyphenols. Food Chemistry, 114(2), 511−515. https://doi.org/10.1016/j.foodchem.2008.09.080.

Sidor, A., & Gramza-Michałowska, A. (2015). Advanced research on the antioxidant and health benefit of elderberry (Sambucus nigra) in food-A review. Journal of Functional Foods, 18(В), 941−958. https://doi.org/10.1016/j.jff.2014.07.012.

Senica, M., Stampar, F., Veberic, R., Mikulic-Petkovsek, M. (2016). Processed elderberry (Sambucus nigra L.) products: A beneficial or harmful food alternative? LWT - Food Science and Technology, 72, 182−188. https://doi.org/10.1016/j.lwt.2016.04.056.

Burak, L.C. (2020). The use of elder marc in the food industry. New Technologies, 16(5), 20–27. https://doi.org/10.47370/2072-0920-2020-16-5-20-27.

Seabra, I.J., Braga, M.E., Batista, M.T., & de Sousa, H.C. (2010). Fractioned high pressure extraction of anthocyanins from elderberry (Sambucus nigra L.) pomace. Food and Bioprocess Technology, 3(5), 674–683. https://doi.org/10.1007/s11947-008-0134-2.

Tomasz, Kalak, Joanna, Dudczak-Hałabuda, Yu, Tachibana, & Ryszard, Cierpiszewski. (2020). Effective use of elderberry (Sambucus nigra) pomace in biosorption processes of Fe(III) ions. Chemosphere, 246, 125744. https://doi.org/10.1016/j.chemosphere.2019.125744.

Polka, D., Podsędek, A. & Koziołkiewicz, M. (2019). Comparison of Chemical Composition and Antioxidant Capacity of Fruit, Flower and Bark of Viburnum opulus. Plant Foods Hum Nutr, 74, 436−442. https://doi.org/10.1007/s11130-019-00759-1

Ersoy, N., Ercisli, S., & Gündoğdu, M. (2017). Evaluation of European Cranberrybush (Viburnum opulus L.) genotypes for agro-morphological, biochemical and bioactive characteristics in Turkey. Folia Horticulturae, 29(2), 181–188. https://doi.org/10.1515/fhort-2017-0017

Wei, E, Yang, R, Zhao, H, Wang, P, Zhao, S, Zhai, W, … Zhou, H. (2019). Microwave-assisted extraction releases the antioxidant polysaccharides from seabuckthorn (Hippophae rhamnoides L.) berries. Int J Biol Macromol, 13(123), 280–290.

https://doi.org/10.1016/j.ijbiomac.2018.11.074.

Ozkan, G., Ercisli, S., Ibrahim, H., & Gulce, S. (2020). Diversity on fruits of wild grown European cranberrybush from coruh valley in Turkey. Erwerbsobstbau, 62(3), 275−279.

https://doi.org/10.1007/s10341-020-00489-8

Cam, M., Hisil, Y., & Kuscu, A. (2007). Organic acid, phenolic content, and antioxidant capacity of fruit flesh and seed of Viburnum opulus. Chemistry of Natural Compounds, 43(4), 460−461.

https://doi.org/10.1007/s10600-007-0161-7.

Cesoniene, L., Daubaras, R., Vencloviene, J., & Viškelis, P. (2010). Biochemical and agro-biological diversity of Viburnum opulus genotypes. Cent. Eur. J. Biol, 5, 864−871. https://doi.org/10.2478/s11535-010-0088-z

Kraujalytė, V., Venskutonis, P.R., Pukalskas, A., Česonienė, L., Daubaras, R. (2013). Antioxidant properties and polyphenolic compositions of fruits from different European cranberrybush (Viburnum opulus L.) genotypes. Food Chem, 141(4), 3695–702. https://doi.org/10.1016/j.foodchem.2013.06.054.

Rop, O., Reznicek, V., Valsikova, M., Jurikova, T., Mlcek, J., & Kramarova, D. (2010). Antioxidant properties of Guelder rose (Viburnum opulus var. edule). Molecules, 15(6), 4467−4477.

https://doi.org/10.3390/molecules15064467.

Erbay, B., & Küçüköner, E. (2008). Gıda Endüstrisinde Kullanılan Farklı Kurutma Sistemleri http://www.gidadernegi.org/TR/Genel/2409349410b0d.pdf?DIL=1&BELGEANAH=1612&DOSYAISIM=240934941.pdf. Accessed January 6, 2022

Dirim, S.N., Çalışkan, G., & Ergün, K. (2015). Dondurularak kurutulmuş bazı meyve tozlarının toz ürün özelliklerinin belirlenmesi. Gıda, 40(2), 85−92. https://doi.org/10.15237/gida.GD14059

Samilyk, M., Helikh, A., Bolgova, N., Potapov, V., & Sabadash, S. (2020). The application of osmotic dehydration in the technology of producing candied root vegetables. Eastern-European Journal of Enterprise Technologies, 3(11(105), 13–20. https://doi.org/10.15587/1729-4061.2020.204664

Ahmed, I., Qazi, I.M., & Jamal, S. (2016). Developments in osmotic dehydration technique for the Рreservation of Fruits and Vegetables. Innovative Food Science and Emerging Technologies, 34, 29−43. https://doi.org/10.1016/j.ifset.2016.01.003.

Tiwari, R.B. (2005). Application of osmo-air dehydration for processing of tropical fruits in rural areas. Indian Food Industry, 24(6), 62−69.

Ying, D., Sanguansri, L., Cheng, L., & Augustin, M.A. (2021). Nutrient-Dense Shelf-Stable Vegetable Powders and Extruded Snacks Made from Carrots and Broccoli. Foods, 10(10), 2298.

https://doi.org/10.3390/foods10102298

Kintsurashvili, K.M., Hvedelidze, V.G., & Melkadze, R.G. (2008). Fiziko-himicheskie pokazateli i aminokislotnyiy sostav soka iz yagod buzinyi travyanistoy (Sambucus edulusl.). Himiya rastitelnogo syirya, (3), 93–95.

Barak, Timur Hakan, Celep, Engin, İnan, Yiğit, Yesilada, Erdem. (2019). Influence of in vitro human digestion on the bioavailability of phenolic content and antioxidant activity of Viburnum opulus L. (European cranberry) fruit extracts. Industrial Crops and Products, 131, 62–69. https://doi.org/10.1016/j.indcrop.2019.01.037.

Zuzana, Ciesarová, Michael, Murkovic, Karel, Cejpek, František, Kreps, Blanka, Tobolková, Richard, … Zuzana, Burčová. (2020). Why is sea buckthorn (Hippophae rhamnoides L.) so exceptional? A review. Food Research International, 133, 109170.

https://doi.org/10.1016/j.foodres.2020.109170.

Nikulina, E. O., Ivanova, G. V., Kolman, O. Ya. (2015). [Oblepihovyiy shrot kak funktsionalnyiy ingredient dlya sozdaniya produktov funktsionalnogo naznacheniya]. Vestnik Krasnoyarskogo gosudarstvennogo agrarnogo universiteta, 10, 98–105.

Koshelev, Yu. A., Ageeva, L. D. (2004). Oblepiha: Monografiya. Biysk: NITs BPGU im. V.M. Shukshina.

Published

2022-10-31