LEAD DIOXIDE-PERFLUOROOCTANESULFONATE COMPOSITES: ELECTROSYNTHESIS AND APPLICATION
DOI:
https://doi.org/10.15421/jchemtech.v30i3.258525Keywords:
potassium perfluorooctanesulfonate, lead dioxide, electrosynthesis, nitrate electrolyte, 4-chlorophenolAbstract
The regularities of electrosynthesis, properties, and electrocatalytic activity of the composites lead dioxide-perfluorooctanesulfonate have been investigated. Comprehensive data on the regularities of PbO2 nucleation in the presence of perfluorooctane sulfonate in the deposition electrolyte are obtained. The kinetics of the deposition of composites in the presence of surfactant in the deposition electrolyte has been studied, it is shown that the effect of inhibiting of PbO2 deposition, which is evident more with increasing of fluorine-carbon chain length, no longer evident when the chain reaches eight carbon atoms. The morphology and phase composition of composites were studied. The influence of the composition of composites on the reaction of oxygen evolution and oxidation of 4-chlorophenol was studied.
References
Babak, A.A., Amadelli, R., De Battisti, A., Fateev, V.N. (1994). Influence of anions on oxygen/ozone evolution on PbO2/spe and PbO2/Ti electrodes in neutral pH media, Electrochimica Acta, 39(11-12), 1597–1602. https://doi.org/10.1016/0013-4686(94)85141-7
Wang, Yu.-H., Chen, Q.-Yu. (2013). Anodic materials for electrocatalytic ozone generation, Int. J. Electrochem., 2013, 128248. https://doi.org/10.1155/2013/128248
Trasatti, S. (1984). Electrocatalysis in the anodic evolution of oxygen and chlorine, Electrochim. Acta, 29(11), 1503–1512. https://doi.org/10.1016/0013-4686(84)85004-5
Tong, Sk., Zhang, T., Ma, Ch. (2008). Oxygen evolution behavior of PTFE-F-Pb02 electrode in H2S04 solution, Chin. J. Chem. Eng., 16, 885–889.
Cao, J., Zhao, H., Cao, F., Zhang, J. (2007). The influence of F– doping on the activity of Pb02 film electrodes in oxygen evolution reaction, Electrochim. Acta, 52(28), 7870–7876. https://doi.org/10.1016/j.electacta.2007.06.038
Rogachev, T. (1988). Effect of antimony on the anodic corrosion of lead and oxygen evolution at the Pb/Pb02/H20/02/H2S04 electrode system, J. Power Sources, 23, 331–340. https://doi.org/10.1016/0378-7753(88)80077-6
Shmychkova, O.B., Luk’yanenko, T.V., Amadelli, R., Velichenko, A.B. (2014). PbO2 anodes modified by cerium ions, Prot. Met. Phys. Chem. Surf., 50(4), 493–498. https://doi.org/10.1134/S2070205114040169
Monahov, V., Pavlov, D., Petrov, D. (2000). Influence of Ag as alloy additive on the oxygen evolution reaction on Pb/Pb02 electrode, J. Power Sources, 85, 59–62. https://doi.org/10.1016/S0378-7753(99)00383-3
Shmychkova, O., Luk'yanenko, T., Velichenko, A., Meda, L., Amadelli, R. (2013). Bi-doped PbO2 anodes: Electrodeposition and physico-chemical properties, Electrochim. Acta, 111, 332–338. https://doi.org/10.1016/j.electacta.2013.08.082
Velichenko, A., Devilliers, D. (2007). Electrodeposition of fluorine-doped lead dioxide, J. Fluorine Chem., 128(4), 269–276.
https://doi.org/10.1016/j.jfluchem.2006.11.010
Velichenko, A.B., Luk’yanenko, T.V., Shmychkova, O.B., Knysh, V.O. (2021). New approaches to the creation of nanocomposite anode materials based on PbO2: a review, Theor. Experim. Chem., 57(5), 331–342 https://doi.org/10.1007/s11237-022-09709-6
Velichenko, A., Luk’yanenko, T., Shmychkova, O. (2020). Lead dioxide-SDS composites: design and properties, J. Electroanal. Chem., 873 114412. https://doi.org/10.1016/j.jelechem.2020.114412
Luk’yanenko, T., Shmychkova, O., Velichenko, A. (2020). PbO2-surfactant composites: electrosynthesis and catalytic activity, J. Solid State Electrochem., 24(4), 245–256. https://doi.org/10.1007/s10008-020-04572-8
Li, X., Xu, H., Yan, W. (2017) Effects of twelve sodium dodecyl sulfate (SDS) on electro-catalytic performance and stability of PbO2 electrode, J Alloy Compd, 718, 386–395. https://doi.org/10.1016/j.jallcom.2017.05.147
Man, Sh., Luo, D., Sun, Q., Yang, H., Bao, H., Xu, K., Zeng, X., He, M., Yin, Z., Wang, L., Mo, Zh., Yang, W., Li X. (2022). When MXene (Ti3C2Tx) meet Ti/PbO2: An improved electrocatalytic activity and stability, J. Hazard Mater., 430, 128440. https://doi.org/10.1016/j.jhazmat.2022.128440
Velichenko, A., Luk’yanenko, T., Shmychkova, O., Dmitrikova, L. (2020). Electrosynthesis and catalytic activity of PbO2-fluorinated surfactant composites, J. Chem. Technol. Biotechnol., 95(12), 3085–3092. https://doi.org/10.1002/jctb.6483
Velichenko, A., Luk’yanenko, T., Nikolenko, N., Shmychkova, O., Demchenko, P., Gladyshevskii, R. (2020). Composite electrodes PbO2-Nafion®, J. Electrochem. Soc., 167(6), 063501. https://doi.org/10.1149/1945-7111/ab805f
Shen, Y., Li, Yu., Yao, Y., Xia, Yu., Jiao, M., Han, E. (2021). Electrodeposition and catalytic performance of hydrophobic PbO2 electrode modified by surfactant OP-10, ECS J Solid State Sci. Technol., 10(12), 123005 https://orcid.org/0000-0002-7617-5136
Kotthoff, M., Muller, J., Jurling, H., Schlummer, M., Fiedler, D. (2015). Perfluoroalkyl and polyfluoroalkyl substances in consumer products, Environ. Sci. Pollut. Res., 22, 14546–14559. https://doi.org/ 10.1007/s11356-015-4202-7
Wood, R.J., Sidnell, T., Ross, I., McDonough, J., Lee, J., Bussemaker, M.J. (2020). Ultrasonic degradation of perfluorooctane sulfonic acid (PFOS) correlated with sonochemical and sonoluminescence characterisation, Ultrason. Sonochem., 68, 105196. https://doi.org/10.1016/j.ultsonch. 2020.105196
Buck, R.C., Franklin, J., Berger, U., Conder, J.M., Cousins, I.T., de Voogt, P., Jensen, A.A., Kannan, K., Mabury, S.A., van Leeuwen, S.PJ. (2011). Perfluoroalkyl and polyfluoroalkyl substances in the environment: Terminology, classification, and origins, Integr. Environ. Assess. Manag., 7(4), 513–541. https://doi.org/10.1002/ieam.258
Ross, I., McDonough, J., Miles, J., (2018). A review of emerging technologies for remediation of PFASs, Remediation, 28(2), 101–126.
https://doi.org/10.1002/rem.21553
Damaskin, B. (1971). Adsorption of organic compounds on electrodes, Plenum Press, Springer US, NY.
Trasatti, S., Lodi, G. (1981). Electrodes of conductive metallic oxides. Part B, Elsevier, Amsterdam, Holland.
Kapalka, A., Foti, G., Comninellis, Ch. (2008). Determination of the Tafel slope for oxygen evolution on boron-doped diamond electrodes, Electrochem. Commun., 10(4), 607–610.
https://doi.org/10.1016/j.elecom.2008.02.003
Amadelli, R., Maldotti, A., Molinari, A. Danilov, F.I., Velichenko, A.B. (2002). Influence of the electrode history and effects of the electrolyte composition and temperature on O2 evolution at β-PbO2 anodes in acid media, J. Electroanal. Chem., 534(1). 1–12. https://doi.org/10.1016/S0022-0728(02)01152-
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Oles Honchar Dnipro National University
This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors reserve the right of attribution for the submitted manuscript, while transferring to the Journal the right to publish the article under the Creative Commons Attribution License. This license allows free distribution of the published work under the condition of proper attribution of the original authors and the initial publication source (i.e. the Journal)
- Authors have the right to enter into separate agreements for additional non-exclusive distribution of the work in the form it was published in the Journal (such as publishing the article on the institutional website or as a part of a monograph), provided the original publication in this Journal is properly referenced
- The Journal allows and encourages online publication of the manuscripts (such as on personal web pages), even when such a manuscript is still under editorial consideration, since it allows for a productive scientific discussion and better citation dynamics (see The Effect of Open Access).