LEAD DIOXIDE-PERFLUOROOCTANESULFONATE COMPOSITES: ELECTROSYNTHESIS AND APPLICATION

Authors

DOI:

https://doi.org/10.15421/jchemtech.v30i3.258525

Keywords:

potassium perfluorooctanesulfonate, lead dioxide, electrosynthesis, nitrate electrolyte, 4-chlorophenol

Abstract

The regularities of electrosynthesis, properties, and electrocatalytic activity of the composites lead dioxide-perfluorooctanesulfonate have been investigated. Comprehensive data on the regularities of PbO2 nucleation in the presence of perfluorooctane sulfonate in the deposition electrolyte are obtained. The kinetics of the deposition of composites in the presence of surfactant in the deposition electrolyte has been studied, it is shown that the effect of inhibiting of PbO2 deposition, which is evident more with increasing of fluorine-carbon chain length, no longer evident when the chain reaches eight carbon atoms. The morphology and phase composition of composites were studied. The influence of the composition of composites on the reaction of oxygen evolution and oxidation of 4-chlorophenol was studied.

References

Babak, A.A., Amadelli, R., De Battisti, A., Fateev, V.N. (1994). Influence of anions on oxygen/ozone evolution on PbO2/spe and PbO2/Ti electrodes in neutral pH media, Electrochimica Acta, 39(11-12), 1597–1602. https://doi.org/10.1016/0013-4686(94)85141-7

Wang, Yu.-H., Chen, Q.-Yu. (2013). Anodic materials for electrocatalytic ozone generation, Int. J. Electrochem., 2013, 128248. https://doi.org/10.1155/2013/128248

Trasatti, S. (1984). Electrocatalysis in the anodic evolution of oxygen and chlorine, Electrochim. Acta, 29(11), 1503–1512. https://doi.org/10.1016/0013-4686(84)85004-5

Tong, Sk., Zhang, T., Ma, Ch. (2008). Oxygen evolution behavior of PTFE-F-Pb02 electrode in H2S04 solution, Chin. J. Chem. Eng., 16, 885–889.

Cao, J., Zhao, H., Cao, F., Zhang, J. (2007). The influence of F– doping on the activity of Pb02 film electrodes in oxygen evolution reaction, Electrochim. Acta, 52(28), 7870–7876. https://doi.org/10.1016/j.electacta.2007.06.038

Rogachev, T. (1988). Effect of antimony on the anodic corrosion of lead and oxygen evolution at the Pb/Pb02/H20/02/H2S04 electrode system, J. Power Sources, 23, 331–340. https://doi.org/10.1016/0378-7753(88)80077-6

Shmychkova, O.B., Luk’yanenko, T.V., Amadelli, R., Velichenko, A.B. (2014). PbO2 anodes modified by cerium ions, Prot. Met. Phys. Chem. Surf., 50(4), 493–498. https://doi.org/10.1134/S2070205114040169

Monahov, V., Pavlov, D., Petrov, D. (2000). Influence of Ag as alloy additive on the oxygen evolution reaction on Pb/Pb02 electrode, J. Power Sources, 85, 59–62. https://doi.org/10.1016/S0378-7753(99)00383-3

Shmychkova, O., Luk'yanenko, T., Velichenko, A., Meda, L., Amadelli, R. (2013). Bi-doped PbO2 anodes: Electrodeposition and physico-chemical properties, Electrochim. Acta, 111, 332–338. https://doi.org/10.1016/j.electacta.2013.08.082

Velichenko, A., Devilliers, D. (2007). Electrodeposition of fluorine-doped lead dioxide, J. Fluorine Chem., 128(4), 269–276.

https://doi.org/10.1016/j.jfluchem.2006.11.010

Velichenko, A.B., Luk’yanenko, T.V., Shmychkova, O.B., Knysh, V.O. (2021). New approaches to the creation of nanocomposite anode materials based on PbO2: a review, Theor. Experim. Chem., 57(5), 331–342 https://doi.org/10.1007/s11237-022-09709-6

Velichenko, A., Luk’yanenko, T., Shmychkova, O. (2020). Lead dioxide-SDS composites: design and properties, J. Electroanal. Chem., 873 114412. https://doi.org/10.1016/j.jelechem.2020.114412

Luk’yanenko, T., Shmychkova, O., Velichenko, A. (2020). PbO2-surfactant composites: electrosynthesis and catalytic activity, J. Solid State Electrochem., 24(4), 245–256. https://doi.org/10.1007/s10008-020-04572-8

Li, X., Xu, H., Yan, W. (2017) Effects of twelve sodium dodecyl sulfate (SDS) on electro-catalytic performance and stability of PbO2 electrode, J Alloy Compd, 718, 386–395. https://doi.org/10.1016/j.jallcom.2017.05.147

Man, Sh., Luo, D., Sun, Q., Yang, H., Bao, H., Xu, K., Zeng, X., He, M., Yin, Z., Wang, L., Mo, Zh., Yang, W., Li X. (2022). When MXene (Ti3C2Tx) meet Ti/PbO2: An improved electrocatalytic activity and stability, J. Hazard Mater., 430, 128440. https://doi.org/10.1016/j.jhazmat.2022.128440

Velichenko, A., Luk’yanenko, T., Shmychkova, O., Dmitrikova, L. (2020). Electrosynthesis and catalytic activity of PbO2-fluorinated surfactant composites, J. Chem. Technol. Biotechnol., 95(12), 3085–3092. https://doi.org/10.1002/jctb.6483

Velichenko, A., Luk’yanenko, T., Nikolenko, N., Shmychkova, O., Demchenko, P., Gladyshevskii, R. (2020). Composite electrodes PbO2-Nafion®, J. Electrochem. Soc., 167(6), 063501. https://doi.org/10.1149/1945-7111/ab805f

Shen, Y., Li, Yu., Yao, Y., Xia, Yu., Jiao, M., Han, E. (2021). Electrodeposition and catalytic performance of hydrophobic PbO2 electrode modified by surfactant OP-10, ECS J Solid State Sci. Technol., 10(12), 123005 https://orcid.org/0000-0002-7617-5136

Kotthoff, M., Muller, J., Jurling, H., Schlummer, M., Fiedler, D. (2015). Perfluoroalkyl and polyfluoroalkyl substances in consumer products, Environ. Sci. Pollut. Res., 22, 14546–14559. https://doi.org/ 10.1007/s11356-015-4202-7

Wood, R.J., Sidnell, T., Ross, I., McDonough, J., Lee, J., Bussemaker, M.J. (2020). Ultrasonic degradation of perfluorooctane sulfonic acid (PFOS) correlated with sonochemical and sonoluminescence characterisation, Ultrason. Sonochem., 68, 105196. https://doi.org/10.1016/j.ultsonch. 2020.105196

Buck, R.C., Franklin, J., Berger, U., Conder, J.M., Cousins, I.T., de Voogt, P., Jensen, A.A., Kannan, K., Mabury, S.A., van Leeuwen, S.PJ. (2011). Perfluoroalkyl and polyfluoroalkyl substances in the environment: Terminology, classification, and origins, Integr. Environ. Assess. Manag., 7(4), 513–541. https://doi.org/10.1002/ieam.258

Ross, I., McDonough, J., Miles, J., (2018). A review of emerging technologies for remediation of PFASs, Remediation, 28(2), 101–126.

https://doi.org/10.1002/rem.21553

Damaskin, B. (1971). Adsorption of organic compounds on electrodes, Plenum Press, Springer US, NY.

Trasatti, S., Lodi, G. (1981). Electrodes of conductive metallic oxides. Part B, Elsevier, Amsterdam, Holland.

Kapalka, A., Foti, G., Comninellis, Ch. (2008). Determination of the Tafel slope for oxygen evolution on boron-doped diamond electrodes, Electrochem. Commun., 10(4), 607–610.

https://doi.org/10.1016/j.elecom.2008.02.003

Amadelli, R., Maldotti, A., Molinari, A. Danilov, F.I., Velichenko, A.B. (2002). Influence of the electrode history and effects of the electrolyte composition and temperature on O2 evolution at β-PbO2 anodes in acid media, J. Electroanal. Chem., 534(1). 1–12. https://doi.org/10.1016/S0022-0728(02)01152-

Downloads

Published

2022-10-31