quantum chemical modeling, hydrogen bond energy, Gibbs free energy, equilibrium constants, orthosilicic acid, methanesulfonic acid, orthophosphate acid, sulfuric acid, the center of Bronsted


A theoretical study at the DFT level was performed, where the energy parameters of hydrogen bonds for H4SiO4 · L composition clusters were shown, where L is H2O, CH3SO3H, CH3SO3, H3PO4, H2PO4, HPO42, PO43, HSO4, SO42, and their reactions of accession, exchange with the corresponding equilibrium constants. It has been shown that the stability of the H4SiO4 molecule increases in the series HSO4< CH3SO3 < H2PO4 < SO42< PO43< HPO43. As a result of this research found that the greatest stability of the H4SiO4 molecule is observed in the presence of the anion HPO43 as a ligand. Analysis of the calculations showed that with increasing degree of dissociation of ligands there is a nonlinear trend of changes in binding energy depending on the nature of the ligand. It has been shown that all the acids studied form two hydrogen bonds with the OH groups of orthosilicic acid. The dependences of the free Gibbs energy on the total charge of orthophosphate acid and the total binding energy of intermolecular hydrogen bonds on the free Gibbs energy of the cluster formation reaction with orthophosphate anions are shown. The binding features of the Bransted center are shown on the example of the cluster [H5SiO4+·CH3SO3].

Author Biographies

Mandryka Artem, Ukrainian State University of Chemical Technology

PhD student

Pasenko Oleksandr, Ukrainian State University of Chemical Technology

Candidate of Technical Sciences, Docent

Vereschak Viktor, Oles Honchar Dnipro National University

Doctor of Technical Sciences, professor

Osokin Yevhen, Oles Honchar Dnipro National University

PhD student


Chappell, H. F., Jugdaohsingh, R., Powell, J. J. (2020). Physiological silicon incorporation into bone mineral requires orthosilicic acid metabolism to SiO44−. Journal of the Royal Society Interface, 17(167), 1–10. https://doi.org/10.1098/rsif.2020.0145

Putko, P., Kwaśny, M. (2020). Bioavailable silicon forms in dietary supplements. Biuletyn Wojskowej Akademii Technicznej, 69(2), 35–41.


Scholey, D. V., Belton, D. J., Burton, E. J., Perry, C. C. (2018). Bioavailability of a novel form of silicon supplement. Scientific reports, 8(1), 1–8. https://doi.org/10.1038/s41598-018-35292-9

Mondal, B., Ghosh, D., Das, A. K. (2009). Thermochemistry for silicic acid formation reaction: Prediction of new reaction pathway. Chemical Physics Letters, 478(4–6), 115–119.


Dwivedi, S., Kumar, A., Mishra, S., Sharma, P., Sinam, G., Bahadur, L., ... Tripathi, R. D. (2020). Orthosilicic acid (OSA) reduced grain arsenic accumulation and enhanced yield by modulating the level of trace element, antioxidants, and thiols in rice. Environmental Science and Pollution Research, 27(19), 24025–24038. https://doi.org/10.1007/s11356-020-08663-x

Pielesz, A., Fabia, J., Biniaś, W., Fryczkowski, R., Fryczkowska, B., Gawłowski, A., ... Waksmańska, W. (2021). Graphene Oxide and Stabilized Ortho-Silicic Acid as Modifiers of Amnion and Burn Affected Skin: A Comparative Study. Nanotechnology, science and applications, 14, 49–67.


Pasenko, O. O., Mandryka, A. G., Mala, M. A., Golichenko, Yu. O. (2020). [Obtaining stable solutions of orthosilicic acid]. «Science, Society, Education: Topical Issues And Development Prospects», Abstracts of VII International Scientific and Practical Conference, 271–273. (In Ukrainian)

Frisch, M. J. E. A., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., ... & Fox, A. D. (2009). Gaussian 09, Revision D.01. Gaussian. Inc., Wallingford.

König, F. B., Schönbohm, J., Bayles, D. (2001). AIM2000-a program to analyze and visualize atoms in molecules. Journal of Computational Chemistry, 22(5), 545–559.

Becke, A. D. (1993). Density-Functional Thermochemistry. III. The Role of Exact Exchange. Indian Journal of Pure & Applied Physics, 98(7), 5648–5656. https://doi.org/10.1063/1.464913

Lee, C., Yang, W., Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical review B, 37(2), 785. https://doi.org/10.1103/PhysRevB.37.785

Kravchenko, A. A., Demianenko, E. M., Grebenyuk, A. G., Terets, M. I., Portna, M. G., Lobanov, V. V. (2021). Quantum chemical study on the interaction of arginine with silica surface. Chemistry, Physics and Technology of Surface, 12(4), 358–364.


Wiberg, K. B. (2004). Basis set effects on calculated geometries: 6‐311++G** vs. aug‐cc‐pVDZ. Journal of computational chemistry, 25(11), 1342–1346. https://doi.org/10.1002/jcc.20058

Demianenko, E., Ilchenko, M., Grebenyuk, A., Lobanov, V. (2011). A theoretical study on orthosilicic acid dissociation in water clusters. Chemical Physics Letters, 515(4–6), 274–277.


Nimoth, J. P., Müller, T. (2021). The influence of ring strain on the formation of Si–H–Si stabilised oligosilanylsilyl cations. Dalton Transactions, 50(45), 16509–16513. https://doi.org/10.1039/D1DT03375A

Afshari, T., Mohsennia, M. (2019). Effect of the Si, Al and B doping on the sensing behaviour of carbon nanotubes toward ethylene oxide: a computational study. Molecular Simulation, 45(16), 1384–1394. https://doi.org/10.1080/08927022.2019.1635693

Barone, V., Cossi, M., Tomasi, J. (1998). Geometry optimization of molecular structures in solution by the polarizable continuum model.Journal of Computational Chemistry, 19(4), 404–417. https://doi.org/10.1002/(SICI)1096-987X(199803)19:4<404::AID-JCC3>3.0.CO;2-W

Tomasi, J., Mennucci, B., Cammi, R. (2005). Quantum mechanical continuum solvation models.Chemicalreviews, 105(8), 2999–3094. https://doi.org/10.1021/cr9904009

Wick, C. R., Clark, T. (2018). On bond-critical points in QTAIM and weak interactions. Journal of Molecular Modeling, 24(6), 1–9. https://doi.org/10.1007/s00894-018-3684-x

Vargaljuk, V., Okovytyy, S., Polonskyy, V., Kramska, O., Shchukin, A., Leszczynski, J. (2017). Copper Crystallization from Aqueous Solution: Initiation and Evolution of the Polynuclear Clusters. Journal of Cluster Science, 28(5), 2517–2528. https://doi.org/10.1007/s10876-017-1239-4

Vargalyuk, V. F., Osokin, Y. S., Polonskyy, V. A., Glushkov, V. N. (2019). Features of (dπ-pπ)-binding of Cu(I) ions with acrylic, maleic and fumaric acids in aqueous solution. Journal of Chemistry and Technologies, 27(2), 148–157. https://doi.org/10.15421/081916

Espinosa, E., Molins, E., Lecomte, C. (1998). Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chemical Physics Letters, 285(3/4), 170–173. https://doi.org/10.1016/S0009-2614(98)00036-0

Kravchenko, А. А., Demianenko, E. M., Grebenyuk, А. G., Lobanov, V. V. (2018). A Quantum Chemistry Study on the Interaction Between Silica Surface and Aqueous Alkaline Solutions. Physics and chemistry of solidstate, 19(1), 74–78. https://doi.org/10.15330/pcss.19.1.74-78

Joshi, J., Mishra, M. K., Srinivasarao, M. (2011). Silica-supported methanesulfonic acid—An efficient solid Bronsted acid catalyst for the Pechmann reaction in the presence of higher n-alkanes. Canadian Journal of Chemistry, 89(6), 663–670. https://doi.org/10.1139/v11-055

Kester, P. M., Crum, J. T., Li, S., Schneider, W. F., Gounder, R. (2021). Effects of Brønsted acid site proximity in chabazite zeolites on OH infrared spectra and protolytic propane cracking kinetics. Journal of Catalysis, 395, 210–226. https://doi.org/10.1016/j.jcat.2020.12.038

Schroeder, C., Siozios, V., Hunger, M., Hansen, M. R., Koller, H. (2020). Disentangling Brønsted Acid Sites and Hydrogen-Bonded Silanol Groups in High-Silica Zeolite H-ZSM-5. The Journal of Physical Chemistry C, 124(42), 23380–23386. https://doi.org/10.1021/acs.jpcc.0c06113

Jeanvoine, Y., Ángyán, J. G., Kresse, G., Hafner, J. (1998). Brønsted acid sites in HSAPO-34 and chabazite: an ab initio structural study. The Journal of Physical Chemistry B, 102(29), 5573–5580. https://doi.org/10.1021/jp980341n





Physical and inorganic chemistry